Status and Updates of the NPDGamma Experiment

$\frac{d \sigma}{d \Omega} \propto \frac{1}{4 \pi}\left(1+A_{U D} \cos \theta+A_{L R} \sin \theta\right)$

Jason Fry, Indiana University
University of Virginia, Nuclear Physics Seminar
May 14th, 2015
P. Alonzi³, R. Alacron¹, R. Allen4, S. Balascuta ${ }^{1}$, L. Barron-Palos ${ }^{2}$, S. Baeßler3,4, A. Barzilov²5, D. Blyth 1, J.D. Bowman ${ }^{4}$, M. Bychkov³, J.R. Calarco ${ }^{9}$, R.D. Carlini ${ }^{5}$, W.C. Chen ${ }^{6}$, T.E. Chupp ${ }^{7}$,C. Coppola¹2, C. Crawford ${ }^{8}$, K. Craycraft ${ }^{8}$, M. Dabaghyan ${ }^{9}$, D. Evans ${ }^{3}$, N. Fomin ${ }^{10}$, S.J. Freedman ${ }^{13}$, E. Frlež ${ }^{3}$, J. Fry ${ }^{11}$, I. Garishvili¹2, T.R. Gentile ${ }^{6}$, M.T. Gericke ${ }^{14}$ R.C. Gillis ${ }^{11}$, K. Grammer ${ }^{12}$, G.L. Greene 4,12, J. Hamblen²6, C. Hayes ${ }^{12}$, F. W. Hersman ${ }^{9}$, T. Ino ${ }^{15}$, G.L. Jones ${ }^{16}$, L. Kabir ${ }^{\text {8, S. Kucucker }}$ ¹2, B. Lauss ${ }^{17}$, W. Lee ${ }^{18}$, M. Leuschner ${ }^{11}$, W. Losowski ${ }^{11}$, E. Martin ${ }^{8}$, R. Mahurin ${ }^{14}$, M. McCrea ${ }^{14}$, Y. Masuda ${ }^{15}$, J. Mei ${ }^{11}$, G.S. Mitchell ${ }^{19}$, P. Mueller ${ }^{4}$, S. Muto ${ }^{15}$, M. Musgrave ${ }^{12}$, H. Nann ${ }^{11}$, I. Novikov25, S. Page ${ }^{14}$, D.Počanic ${ }^{3}$, S.I. Penttila ${ }^{4}$, D. Ramsay ${ }^{14,20}$, A. Salas Bacci ${ }^{10}$, S. Santra ${ }^{21}$, S. Schreoder ${ }^{27}$, P.-N. Seo 3, E. Sharapov ${ }^{23}$, M. Sharma ${ }^{7}$, T. Smith ${ }^{24}$, W.M. Snow ${ }^{11}$, Z. Tang ${ }^{11}$, W.S. Wilburn ${ }^{10}$, V. Yuan ${ }^{10}$
${ }^{1}$ Arizona State University
${ }^{2}$ Universidad Nacional Autonoma de Mexico ${ }^{3}$ University of Virginia
${ }^{4}$ Oak Ridge National Laboratory
${ }^{5}$ Thomas Jefferson National Laboratory ${ }^{6}$ National Institute of Standards and Technology
7Univeristy of Michigan, Ann Arbor 8University of Kentucky
${ }^{9}$ University of New Hampshire
${ }^{10}$ Los Alamos National Laboratory ${ }^{11}$ Indiana University ${ }^{12}$ University of Tennessee
${ }^{13}$ University of California at Berkeley ${ }^{14}$ University of Manitoba, Canada
${ }^{15} \mathrm{High}$ Energy Accelerator Research Organization (KEK), Japan
${ }^{16}$ Hamilton College
${ }^{17}$ Paul Scherrer Institute, Switzerland
${ }^{18}$ Spallation Neutron Source
${ }^{19}$ University of California at Davis 20TRIUMF, Canada
${ }^{21}$ Bhabha Atomic Research Center, India ${ }^{22}$ Duke University
${ }^{23}$ Joint Institute of Nuclear Research, Dubna, Russia ${ }^{24}$ University of Dayton ${ }^{25}$ Western Kentucky University 26 University of Tennessee at Chattanooga 27 University of Bayreuth

This work is supported by DOE and NSF (USA) NSERC (CANADA) CONACYT (MEXICO) BARC (INDIA)

Table of Contents

- Theoretical motivation of the Hadronic Weak Interaction
- NPDGamma experimental apparatus and asymmetry isolation
- Analysis algorithms
- Geometry factors, systematics, and calibration targets
- Aluminum and LH_{2} analysis and statistical errors

Hadronic Weak Interaction

Weak
$\sim 1 / 100 \mathrm{fm}$
W \& Z exchange

Strong conserves Parity Weak violates Parity
\rightarrow Use PV to isolate weak interactions

- Hadron Weak Interaction (HWI) among nucleons is not well constrained. Low energy, non-perturbative regime makes calculations and experiments difficult.
- The range for W and Z exchange between quarks (10.2 fm) is small compared to the nucleon size (1 fm) \rightarrow HWI is first order sensitive to short range quark-quark correlations in hadrons.
- Quark-quark weak interactions can give insight to non-perturbative ground state of QCD. New results are very exciting!
- Benchmark theory for HWI is the DDH meson exchange model. Couplings

$$
h_{\pi}^{1}, h_{\omega}^{0,1}, h_{\rho}^{0,1,2 \longleftarrow} \longleftarrow \mathrm{I}^{\longleftarrow}
$$

- EFT and LQCD calculations in progress will become the future of the theory

NPDGamma and HWI

- The parity-violating photon asymmetry in the reaction $\vec{n}+p \rightarrow d+\gamma, A_{\gamma}$ is related to the couplings in the DDH model by

$$
A_{\gamma}=-\underline{0.107 h_{\pi}^{1}}-0.001 h_{\rho}^{1}-0.004 h_{\omega}^{1}
$$

dominated by h_{π}^{1}, h_{ρ}^{1} and h_{ω}^{1} small from K decay data

- NPDGamma seeks to measure h_{π}^{1} to 10^{-7}, so A_{γ} must be measured to 10^{-8}. DDH best value of h_{π}^{1} is $5 \times 10^{-7} \rightarrow$ reasonable range is $0 \rightarrow 11 \times 10^{-7}$. Theory is wide open.
- NPDGamma will perform the most precise few nucleon measurement of h_{π}^{1} : sensitive to neutral weak currents

NPDGamma and HWI

Weak NN iso-scalar, iso-vector DDH coupling subspace

NPDGamma Reaction and PV

NPDG at SNS FNPB

Reached 1.4MW at end of September, 2013 - Facility Goal

Neutrons at the SNS

- Proton energy of 940 MeV incident on a circulating target of mercury
- 60 Hz rep rate with time-averaged proton power of 1.4 MW
- Neutrons moderated by four H_{2} moderators, $\mathrm{H}_{2} \mathrm{O}$ moderators, and Be reflector

Neutrons at the SNS

Experimental Apparatus

Experimental Apparatus

- Resonant Spin Rotator flips spins each pulse to cancel time dependent detector gain drifts
- Neutrons capture in LH_{2} target, detected in a 3π Csl detector array (48)

Data Structure and Asymmetry

Asymmetry Extraction

- Could extract asymmetry with just one detector, but since the asymmetry

$$
\begin{array}{r}
\propto \frac{1}{4 \pi}\left(1+A_{U D} \cos \theta+A_{L R} \sin \theta\right) \\
A_{i}^{\text {raw }}=\frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}, \text { where } \alpha=\left[\frac{N_{i}^{\uparrow}}{N_{i}^{\downarrow}}\right]\left[\frac{N_{j}^{\uparrow}}{N_{j}^{\downarrow}}\right]
\end{array}
$$

- Fit to all the detector signals via geometry of the detector array.

Data Structure and Asymmetry

Asymmetry Extraction

- Could extract asymmetry with just one detector, but since the asymmetry

$$
\begin{array}{r}
\propto \frac{1}{4 \pi}\left(1+A_{U D} \cos \theta+A_{L R} \sin \theta\right) \\
A_{i}^{\text {raw }}=\frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}, \text { where } \alpha=\left[\frac{N_{i}^{\uparrow}}{N_{i}^{\downarrow}}\right]\left[\frac{N_{j}^{\uparrow}}{N_{j}^{\downarrow}}\right]
\end{array}
$$

- Fit to all the detector signals via geometry of the detector array.
- Found transient asymmetry from contamination of the ring sum signals by the spin-reversal signal, move to a 16 -step spin sequences

Fractions of the Signal

Phenomena to Overcome

Beam

- Dropped pulses
- Low powered pulses
- Pulse to pulse variation
- Chopper phases

Eliminate data that have

- False asymmetries, systematic error
- Polarization is unknown

Pedestals/corrections

- Constant pedestal
- β-delayed AI
- Essential for asymmetry
- Electronic pedestal

Measure the

- Prompt AI PV correction
- Fractions of prompt signals

Analysis Goals of NPDG

- Eliminate systematics and false asymmetries
- Obtain the amplitude of each pulse (including read pulse) to keep track of dropped pulses, wrap-around neutrons
- Need to determine the dynamic β-delayed Al pedestal in the signal to properly calculate the asymmetry.
- No bias, simple algorithm, minimal assumptions

Analysis Algorithm - "Perfect Pulse"

- Goal: Do a least squares fit with a "perfect pulse" to spin sequences yielding 9 amplitudes a_{i} and a pedestal for each spin sequence
- The χ^{2} value tests the quality of the fit
- The a, 's (including read pulse) can be used to make high level cuts for subsequent analysis
- Fitted pedestal will be subtracted from the asymmetry
- Use PP algorithm for diagnostics, not asymmetry calculations
- Use m1 monitor For spectra changes and chopper phases

Constructing a Perfect Pulse

- Find a 16 step spin sequence that has a single dropped pulse. 1 in every 100 pulses intentionally dropped from the accelerator.
- Go over an entire run to get statistical significance for each bin, subtract the pedestal and normalize. Have what would be one stand alone pulse with wraparounds.

Fit to a Spin Sequence

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

Fit to a Spin Sequence

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

Fit to a Spin Sequence

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

Fit to a Spin Sequence

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

Fit to a Spin Sequence

- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

Fit to a Spin Sequence

Fitted amplitudes provide information on:

$$
\alpha_{i}=\frac{a_{i}}{\frac{1}{7} \sum_{j \neq i} a_{j}}
$$

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

Fit to a Spin Sequence

2,200 runs $=10.7$ beam days

12 runs = 1.4 hours 198 sec Al β-decay buildup

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Pulse height stability in a spin sequence
- Read pulse height
- Dynamic pedestal

Aluminum β-delayed pedestal is $\sim 5 \%$ of the signal. Need to properly subtract it for asymmetry calculation.

Example of Beam Fluctuations

Example of Beam Fluctuations

Chopper phases: Beam Monitor

PP runs 104266-104400 fit to run 104324, entry 193

Chopper phases: Beam Monitor

$-\mathrm{m1}[]: \mathrm{t}\{\mathrm{hq}==0$ \&\& Entry $\$!=0$ \&\& -m1[25]>1.5\}

Chop1[8] quantity

- Fit bins 1.5 to a line \rightarrow good linear region and where chopper opens
- Find the time bin that is $1 / 2$ of the peak in the spectrum \rightarrow normalizes by the section not affected by the chopper opening
- Can be converted to a time in μs and compare with chopper phases

Chopper phases: Beam Monitor

$-m 1[]: \mathrm{t}\{\mathrm{hq}==0$ \& \& Entry $\$==100\}$

- Fit bins $31-35$ to a line \rightarrow good linear region and where chopper opens
- Find the time bin that is $1 / 2$ of the peak in the spectrum \rightarrow normalizes by the section not affected by the chopper opening
- Can be converted to a time in μs and compare with chopper phases

Typical chop1 \& chop2

chop1 diagnostic for each pulse

chop2 diagnostic for each pulse

- RMS of 0.008 time bins $=3.2 \mu \mathrm{~s}$
- During nominal operation, the chopper phases only change by up to $0.3 \mu \mathrm{~s}$, so these are large changes
- Dominated by counting statistics
- Since $m 1$ is before the polarizer, can cut freely since this carries no polarization

Summary of Algorithm

Chopper phase diagnostics

Cuts Applied

Three parallel analyses ongoing from IU, UT, ASU Developed separate algorithms to overcome analysis criteria and goals

1) Minimum amplitude: A gross cut eliminating the dropped pulses which accounts for the majority of the cut data
2) Chopper Phase: Eliminate chopper phase variations to keep data with known polarization and to get a proper β-delayed gamma from algorithm
3) Beam stability within a spin sequence: Eliminate pulse to pulse variations from the accelerator at the 1% level to keep data with the same statistical weight
4) Proper 16-ss: Eliminate transients, wraparounds, and bad SF spin sequences which may contain false asymmetries

Cuts Applied

Minimum Amplitude

- Chopper Phases
- α variation, 1%

- Good 16-step sequence

Cuts Applied

chop2 diagnostic for each pulse

Cuts Applied

- Minimum Amplitude
- Chopper Phases
α variation, 1%

- Good 16-step sequence

Cuts Applied

- Minimum Amplitude
- Chopper Phases
- α variation, 1%

16 step spin sequence

- Good 16-step sequence

No Cuts: Asymmetry Pair 12

Raw Asymmetry in detector pair 12, batch H1

Cut 1: Minimum amplitude

A gross cut eliminating the dropped pulses which accounts for the majority of the cut data

Data cut from just cut 1

Resulting asymmetry after cut 1

Total cut data $=-2.37 \mathrm{e}-05 \pm 4.30 \mathrm{e}-06$
Total cut data has 434495 8-ss

Resulting asymmetry $=-1.30 \mathrm{e}-07 \pm 1.01 \mathrm{e}-07$
Resulting data has 4865579 8-ss

Data cut by this cut $=-2.37 e-05 \pm 4.30 e-06$
Data cut by this cut has 434495 8-ss
73% of all cut data cut here 42

Cut 2: Chopper Phases
Chopper Phase: Eliminate chopper phase variations to keep data with known polarization and pedestal from fits

Cut 3: Pulse to Pulse Stability
Eliminate pulse to pulse variations at the 1% level to keep data with the same statistical weight

Cut 4: Good 16-ss

Eliminate transients, wraparounds, and bad SF spin sequences which may contain false asymmetries

Hydrogen Cuts and Asymmetry
 No cuts
 After cuts

Raw Asymmetry in detector pair 12

Analysis cuts are applied

1. Minimum amplitude
2. Chopper Phases
3. Pulse height variation
4. Proper 16 -ss

$$
\begin{aligned}
& \mathrm{H} 1 \\
& 73 \% \\
& <1 \% \\
& <1 \% \\
& 27 \%
\end{aligned}
$$

Raw Asymmetry in detector pair 12, batch H1

Cut about 15% of the data AVE:
74\%
2\%
3%
21%

Cuts do not depend on polarization. Varying cuts do not change pair asymmetries

Hydrogen Cuts and Asymmetry

Raw Asymmetry in detector pair 0, batch H1

Raw Asymmetry in detector pair 12, batch H1

Raw Asymmetry in detector pair 6, batch H1

Raw Asymmetry in detector pair 18, batch H1

Asymmetry Definition

$A_{i}^{\text {raw }}=\frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$, where $\alpha=\left[\frac{N_{i}^{\uparrow}}{N_{i}^{\downarrow}}\right]\left[\frac{N_{j}^{\uparrow}}{N_{j}^{\downarrow}}\right]$
Any effect that manifests as a common mode beam fluctuation in the detectors are cancelled \cdot whether they are slowly changing fluctuations or spontaneous lower powered pulses. Effects such as difference detector efficiencies and detector misalignments are suppressed in pairs.

Asymmetry Definition
 $$
A_{\text {raw }}=P_{t o t}\left(A_{U D} \cos \theta+A_{L R} \sin \theta\right) \quad \text { Ideal! }
$$

$$
A_{i}^{\text {raw }}=P_{t o t}\left(f_{i}^{H}\left(G_{U D, i}^{H} A_{U D}^{H}+G_{L R, i}^{H} A_{L R}^{H}\right)+f_{i}^{A l}\left(G_{U D, i}^{A l} A_{U D}^{A l}+G_{L R, i}^{A l} A_{L R}^{A l}\right)\right)
$$

Apply polarization, spin flip efficiency, depolarization corrections ($\mathrm{P}_{\text {tot }}$), subtract Aluminum UD and LR asymmetries with appropriate fractions. AI fraction is on average 22\%.

Have to measure PV Aluminum asymmetry and calculate geometric factors!

Geometry Factors
 $$
A_{\text {raw }}=P_{t o t}\left(A_{U D} \cos \theta+A_{L R} \sin \theta\right) \quad \text { Ideal! }
$$

$$
G_{U D}^{i}=<k_{\gamma} \cdot \hat{y}>
$$

$$
G_{L R}^{i}=<k_{\gamma} \cdot \hat{x}>
$$

Neutrons polarized in y

Used combination of MCNPX and Cs source

Correct for position and solid angle of detectors relative to target

Chlorine and Analysis Methods

Chlorine has a known large PV gamma asymmetry check systematics and geometry factors

Fit to the geometry factors to extract the PV AUD

After background subtraction, beam polarization, target depolarization, and RFSF efficiency

Preliminary result:
$A_{U D}=25.9 \pm 0.6 \times 10^{-6}$
$A_{L R}=0.06 \pm 0.6 \times 10^{-6}$
Most precise measurement to date. In agreement with other measurements

Aluminum Analysis

Aluminum target had to be installed inside the LH_{2} cryostat to complete on time. Appropriate geometry factors were calculated for this configuration

Corrected Aluminum 2014 asymmetry

Systematics

Other signals correlated with the polarization state or magnetic fields can create a false asymmetry and are cataloged below. Needs to be well below proposed statistical uncertainty of 1×10^{8}. Instrumental asymmetries are on the order of 1×10^{9}.

False Asymmetries	Correction	Uncertainty	Systematic Error
Additive Asymmetry (instrumental)			$<1 \times 10^{-9}$
Multiplicative Asymmetry (instrumental)			$<1 \times 10^{-9}$
Stern-Gerlach (steering of the beam)			$<1 \times 10^{-10}$
γ - ray circular polarization			$<1 \times 10^{-12}$
β - decay in flight			$<10^{-11}$
Capture on 6Li			$<10^{-11}$
Radiative β decay			$<10^{-12}$
β - delayed Al gammas (internal + external)			$<1 \times 10^{-9}$
Total from False Asymmetries			
Relative Uncertainties			
Geometry Factors		3%	
Polarization from Wrap-around Neutrons		0.1%	
Target Position		0.03%	
Multiplicative Correction			
Beam Polarization (2012-2013)	0.936	0.005	
Beam Polarization (2014)	0.936	0.005	
Beam Depolarization	0.9485	0.041	
RFSF Efficiency (2012-2013)	0.975	0.003	
RFSF Efficiency (2014)	0.966	0.009	
Total			$\sim 2 \times 10^{-9}$

Hydrogen Asymmetry

After subtracting AI and correcting for polarization, target depolarization, and SF efficiency, we have the preliminary intermediate result after 3000 runs or 15 beam days:

$$
A_{U D}=-7.1 \pm 4.4 \times 10^{-8}
$$

Hydrogen running has completed: have ~250 beam days of Hydrogen runs that have been analyzed

Cuts applied are independent of polarization

Result will be published soon.
"The preliminary result for the parity-violating asymmetry A_{γ} is that it is small with a statistical error of about 13 ppb "

Systematic error $\sim 2 \times 10^{-9}$

Summary

- NPDGamma completed data taking at the end of June 2014
- Statistical error is on par with counting statistics!
- All Hydrogen and Aluminum runs have been analyzed and behavior has been explored and explained
- Cuts applied are independent of polarization and the asymmetry
- Plans for NPDGamma
- Publish PV asymmetry in Al needed for proper asymmetry subtraction.
- Publish PV in n-p very soon. Results will be presented at the April meeting.
- "The preliminary result for the parity-violating asymmetry A_{r} is that it is small with a statistical error of about 13 ppb"
P. Alonzi³, R. Alacron¹, R. Allen4, S. Balascuta ${ }^{1}$, L. Barron-Palos ${ }^{2}$, S. Baeßler3,4, A. Barzilov²5, D. Blyth 1, J.D. Bowman ${ }^{4}$, M. Bychkov³, J.R. Calarco ${ }^{9}$, R.D. Carlini ${ }^{5}$, W.C. Chen ${ }^{6}$, T.E. Chupp ${ }^{7}$,C. Coppola¹2, C. Crawford ${ }^{8}$, K. Craycraft ${ }^{8}$, M. Dabaghyan ${ }^{9}$, D. Evans ${ }^{3}$, N. Fomin ${ }^{10}$, S.J. Freedman ${ }^{13}$, E. Frlež ${ }^{3}$, J. Fry ${ }^{11}$, I. Garishvili¹2, T.R. Gentile ${ }^{6}$, M.T. Gericke ${ }^{14}$ R.C. Gillis ${ }^{11}$, K. Grammer ${ }^{12}$, G.L. Greene 4,12, J. Hamblen²6, C. Hayes ${ }^{12}$, F. W. Hersman ${ }^{9}$, T. Ino ${ }^{15}$, G.L. Jones ${ }^{16}$, L. Kabir ${ }^{\text {8, S. Kucucker }}$ ¹2, B. Lauss ${ }^{17}$, W. Lee ${ }^{18}$, M. Leuschner ${ }^{11}$, W. Losowski ${ }^{11}$, E. Martin ${ }^{8}$, R. Mahurin ${ }^{14}$, M. McCrea ${ }^{14}$, Y. Masuda ${ }^{15}$, J. Mei ${ }^{11}$, G.S. Mitchell ${ }^{19}$, P. Mueller ${ }^{4}$, S. Muto ${ }^{15}$, M. Musgrave ${ }^{12}$, H. Nann ${ }^{11}$, I. Novikov25, S. Page ${ }^{14}$, D.Počanic ${ }^{3}$, S.I. Penttila ${ }^{4}$, D. Ramsay ${ }^{14,20}$, A. Salas Bacci ${ }^{10}$, S. Santra ${ }^{21}$, S. Schreoder ${ }^{27}$, P.-N. Seo 3, E. Sharapov ${ }^{23}$, M. Sharma ${ }^{7}$, T. Smith ${ }^{24}$, W.M. Snow ${ }^{11}$, Z. Tang ${ }^{11}$, W.S. Wilburn ${ }^{10}$, V. Yuan ${ }^{10}$
${ }^{1}$ Arizona State University
${ }^{2}$ Universidad Nacional Autonoma de Mexico ${ }^{3}$ University of Virginia
${ }^{4}$ Oak Ridge National Laboratory
${ }^{5}$ Thomas Jefferson National Laboratory ${ }^{6}$ National Institute of Standards and Technology
7Univeristy of Michigan, Ann Arbor 8University of Kentucky
${ }^{9}$ University of New Hampshire
${ }^{10}$ Los Alamos National Laboratory ${ }^{11}$ Indiana University ${ }^{12}$ University of Tennessee
${ }^{13}$ University of California at Berkeley ${ }^{14}$ University of Manitoba, Canada
${ }^{15} \mathrm{High}$ Energy Accelerator Research Organization (KEK), Japan
${ }^{16}$ Hamilton College
${ }^{17}$ Paul Scherrer Institute, Switzerland
${ }^{18}$ Spallation Neutron Source
${ }^{19}$ University of California at Davis 20TRIUMF, Canada
${ }^{21}$ Bhabha Atomic Research Center, India ${ }^{22}$ Duke University
${ }^{23}$ Joint Institute of Nuclear Research, Dubna, Russia ${ }^{24}$ University of Dayton ${ }^{25}$ Western Kentucky University 26 University of Tennessee at Chattanooga 27 University of Bayreuth

This work is supported by DOE and NSF (USA) NSERC (CANADA) CONACYT (MEXICO) BARC (INDIA)

Extras

First Moment

Diagnostic \bigcirc, unantities

bg vs run

Raw Asymmetry in detector 12 , after cuts

First Moment

a, no cuts

bg vs run

Diagnostic Quantities

chop2 diagnostic for each pulse

α, cut 1

background histogram

Raw Asymmetry in detector 12, after cuts

Systematics

Other signals correlated with the polarization state or magnetic fields can create a false asymmetry and are cataloged below. Needs to be well below proposed statistical uncertainty of 1×10^{-8}. Instrumental asymmetries are on the order of 1×10^{9}.

Systematic Effect	Size
Stern-Gerlach	1×10^{-10}
Circularly Polarized γ	1×10^{-12}
In flight β decay	1×10^{-11}
Capture on ${ }^{6} \mathrm{Li}$	1×10^{-11}
Al Radiative β decay	1×10^{-9}
$\mathrm{Al} A_{U D}$ asymmetry	measure

Polarization	$<1 \%$
Target Depolarization	$<0.5 \%$
SF efficiency	$<1 \%$

Al asymmetry is measured, then subtracted Preliminary AI measurement in 2012, more Al stats from Feb - June 2014

Instrumental Asymmetries

Instrumental effects are zero at the 1×10^{-9} level using beam off and LED measurements

Data cut from just cut 3

Resulting asymmetry after cut 1, 2, and 3

Total cut data $=2.71 \mathrm{e}-06 \pm 1.60 \mathrm{e}-06$
Total cut data has 1049526 8-ss

Resulting asymmetry $=\mathbf{- 7 . 5 0 e}-08 \pm 1.04 \mathrm{e}-07$
Resulting data has 3415474 8-ss
———Data cut by this cut $=8.24 \mathrm{e}-07 \pm 4.14 \mathrm{e}-07$
Data cut by this cut has $\mathbf{3 6 8 1 1 6} 8$-ss

