## Status and Updates of the NPDGamma Experiment



Jason Fry, Indiana University University of Virginia, Nuclear Physics Seminar May 14<sup>th</sup>, 2015

#### The NPDGamma collaboration

P. Alonzi<sup>3</sup>, R. Alacron<sup>1</sup>, R. Allen<sup>4</sup>, S. Balascuta<sup>1</sup>, L. Barron-Palos<sup>2</sup>, S. Baeßler<sup>3,4</sup>, A. Barzilov<sup>25</sup>, D. Blyth<sup>1</sup>, J.D. Bowman<sup>4</sup>, M. Bychkov<sup>3</sup>, J.R. Calarco<sup>9</sup>, R.D. Carlini<sup>5</sup>, W.C. Chen<sup>6</sup>, T.E. Chupp<sup>7</sup>, C. Coppola<sup>12</sup>, C. Crawford<sup>8</sup>, K. Craycraft<sup>8</sup>, M. Dabaghyan<sup>9</sup>, D. Evans<sup>3</sup>, N. Fomin<sup>10</sup>, S.J. Freedman<sup>13</sup>, E. Frlež<sup>3</sup>, J. Fry<sup>11</sup>, I. Garishvili<sup>12</sup>, T.R. Gentile<sup>6</sup>, M.T. Gericke<sup>14</sup> R.C. Gillis<sup>11</sup>, K. Grammer<sup>12</sup>, G.L. Greene<sup>4,12</sup>, J. Hamblen<sup>26</sup>, C. Hayes<sup>12</sup>, F. W. Hersman<sup>9</sup>, T. Ino<sup>15</sup>, G.L. Jones<sup>16</sup>, L. Kabir<sup>8</sup>, S. Kucucker<sup>12</sup>, B. Lauss<sup>17</sup>, W. Lee<sup>18</sup>, M. Leuschner<sup>11</sup>, W. Losowski<sup>11</sup>, E. Martin<sup>8</sup>, R. Mahurin<sup>14</sup>, M. McCrea<sup>14</sup>, Y. Masuda<sup>15</sup>, J. Mei<sup>11</sup>, G.S. Mitchell<sup>19</sup>, P. Mueller<sup>4</sup>, S. Muto<sup>15</sup>, M. Musgrave<sup>12</sup>, H. Nann<sup>11</sup>, I. Novikov<sup>25</sup>, S. Page<sup>14</sup>, D.Počanic<sup>3</sup>, S.I. Penttila<sup>4</sup>, D. Ramsay<sup>14,20</sup>, A. Salas Bacci<sup>10</sup>, S. Santra<sup>21</sup>, S. Schreoder<sup>27</sup>, P.-N. Seo<sup>3</sup>, E. Sharapov<sup>23</sup>, M. Sharma<sup>7</sup>, T. Smith<sup>24</sup>, W.M. Snow<sup>11</sup>, Z. Tang<sup>11</sup>, W.S. Wilburn<sup>10</sup>, V. Yuan<sup>10</sup>

<sup>16</sup>Hamilton College <sup>1</sup>Arizona State University <sup>17</sup>Paul Scherrer Institute, Switzerland <sup>2</sup>Universidad Nacional Autonoma de Mexico <sup>18</sup>Spallation Neutron Source <sup>3</sup>University of Virginia <sup>19</sup>University of California at Davis <sup>4</sup>Oak Ridge National Laboratory <sup>20</sup>TRIUMF, Canada <sup>5</sup>Thomas Jefferson National Laboratory <sup>21</sup>Bhabha Atomic Research Center, India <sup>6</sup>National Institute of Standards and <sup>22</sup>Duke University Technology <sup>23</sup>Joint Institute of Nuclear Research, Dubna, Russia <sup>7</sup>Univeristy of Michigan, Ann Arbor <sup>24</sup>University of Dayton <sup>8</sup>University of Kentucky <sup>25</sup>Western Kentucky University <sup>9</sup>University of New Hampshire <sup>26</sup> University of Tennessee at Chattanooga <sup>10</sup>Los Alamos National Laboratory <sup>27</sup> University of Bayreuth <sup>11</sup>Indiana University <sup>12</sup>University of Tennessee This work is supported by <sup>13</sup>University of California at Berkeley DOE and NSF (USA) <sup>14</sup>University of Manitoba, Canada NSERC (CANADA) <sup>15</sup>High Energy Accelerator Research CONACYT (MEXICO) Organization (KEK), Japan BARC (INDIA)

### Table of Contents

• Theoretical motivation of the Hadronic Weak Interaction

 NPDGamma experimental apparatus and asymmetry isolation

• Analysis algorithms

• Geometry factors, systematics, and calibration targets

• Aluminum and LH<sub>2</sub> analysis and statistical errors

### Hadronic Weak Interaction



#### Strong conserves Parity Weak violates Parity

→ Use PV to isolate weak interactions



- Hadron Weak Interaction (HWI) among nucleons is not well constrained. Low energy, non-perturbative regime makes calculations and experiments difficult.
- The range for W and Z exchange between quarks (10<sup>.2</sup>fm) is small compared to the nucleon size (1fm) → HWI is first order sensitive to short range quark-quark correlations in hadrons.
- Quark-quark weak interactions can give insight to non-perturbative ground state of QCD. New results are very exciting!
- Benchmark theory for HWI is the DDH meson exchange model. Couplings

 $h^1_{\pi}, h^{0,1}_{\omega}, h^{0,1,2}_{\rho} \xleftarrow{} \Delta \mathsf{I}$  Meson exchange

• EFT and LQCD calculations in progress – will become the future of the theory

4

### NPDGamma and HWI

• The parity-violating photon asymmetry in the reaction  $\vec{n}+p \to d+\gamma$  ,  $A_\gamma$  is related to the couplings in the DDH model by

$$A_{\gamma} = -0.107h_{\pi}^{1} - 0.001h_{\rho}^{1} - 0.004h_{\omega}^{1}$$

dominated by  $h_{\pi}^1$  ,  $h_{
ho}^1$  and  $h_{\omega}^1$  small from K decay data

- NPDGamma seeks to measure  $h_{\pi}^{1}$  to  $10^{.7}$ , so  $A_{\gamma}$  must be measured to  $10^{.8}$ . DDH best value of  $h_{\pi}^{1}$  is  $5 \times 10^{.7} \rightarrow$ reasonable range is  $0 \rightarrow 11 \times 10^{.7}$ . Theory is wide open.
- NPDGamma will perform the most precise few nucleon measurement of h<sup>1</sup><sub>π</sub>: sensitive to neutral weak currents

#### NPDGamma and HWI

Weak NN iso-scalar, iso-vector DDH coupling subspace



### NPDGamma Reaction and PV



Electric and Magnetic dipole transitions from n-p radiative capture

Produces mixture of states with opposite parity

Flipping the neutron polarization is equivalent to a parity transformation

NPDG measures the asymmetry between the neutron polarization and the emitted photon's momentum

#### NPDG at SNS FNPB

#### Reached 1.4MW at end of September, 2013 – Facility Goal



#### Neutrons at the SNS







- Proton energy of 940MeV incident on a circulating target of mercury
- 60Hz rep rate with time-averaged proton power of 1.4MW
- Neutrons moderated by four  $H_2$  moderators,  $H_2O$  moderators, and Be reflector

#### Neutrons at the SNS







- Proton energy of 940MeV incident on a circulating target of mercury
- 60Hz rep rate with time-averaged proton power of 1.4MW
- Neutrons moderated by four  $H_2$  moderators,  $H_2O$  moderators, and Be reflector



![](_page_11_Figure_0.jpeg)

![](_page_12_Figure_0.jpeg)

#### SF and Detector Array

![](_page_13_Picture_1.jpeg)

Battery

![](_page_13_Figure_2.jpeg)

#### γ-Detector Array

- 4 rings of 12 Csl detectors → 48 total, form into 24 pairs
- 3π acceptance, current mode
- Rate: 100MHz

![](_page_13_Figure_7.jpeg)

### Data Structure and Asymmetry

![](_page_14_Figure_1.jpeg)

#### **Asymmetry Extraction**

 Could extract asymmetry with just one detector, but since the asymmetry

 $\propto \frac{1}{4\pi} \left( 1 + A_{UD} \cos\theta + A_{LR} \sin\theta \right)$ 

$$A_i^{raw} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}, \text{ where } \alpha = \left[\frac{N_i^{\uparrow}}{N_i^{\downarrow}}\right] \left[\frac{N_i^{\uparrow}}{N_i^{\downarrow}}\right]$$

 Fit to all the detector signals via geometry of the detector array.

![](_page_14_Figure_7.jpeg)

### Data Structure and Asymmetry

![](_page_15_Figure_1.jpeg)

#### **Asymmetry Extraction**

Could extract asymmetry with just one detector, but since the asymmetry

 $\propto \frac{1}{4\pi} \left( 1 + A_{UD} \cos\theta + A_{LR} \sin\theta \right)$ 

$$A_i^{raw} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$$
, where  $\alpha = \left| \frac{N_i^{\uparrow}}{N_i^{\downarrow}} \right| \left| \frac{N_j^{\uparrow}}{N_j^{\downarrow}} \right|$ 

- Fit to all the detector signals via ٠ geometry of the detector array.
- Found transient asymmetry from contamination of the ring sum signals by the spin-reversal signal, move to a 16-step spin sequences

$$\begin{array}{c} \uparrow \downarrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ + \\ \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \\ 16 \end{array} = 16 \text{ ss}$$

#### Fractions of the Signal

![](_page_16_Figure_1.jpeg)

#### Phenomena to Overcome

Beam

- Dropped pulses
- Low powered pulses
- Pulse to pulse variation
- Chopper phases

Eliminate data that have

- False asymmetries, systematic error
- Polarization is unknown

Pedestals/corrections

- Constant pedestal
  - $\beta$  -delayed Al
  - Essential for asymmetry
- Electronic pedestal

Measure the

- Prompt AI PV correction
- Fractions of prompt signals

### Analysis Goals of NPDG

- Eliminate systematics and false asymmetries
- Obtain the amplitude of each pulse (including read pulse) to keep track of dropped pulses, wrap-around neutrons
- Need to determine the dynamic  $\beta$  -delayed AI pedestal in the signal to properly calculate the asymmetry.

![](_page_18_Figure_4.jpeg)

![](_page_18_Figure_5.jpeg)

#### Analysis Algorithm – "Perfect Pulse"

- Goal: Do a least squares fit with a "perfect pulse" to spin sequences yielding 9 amplitudes a<sub>i</sub> and a pedestal for each spin sequence
  - The  $\chi^2$  value tests the quality of the fit
  - The a<sub>i</sub>'s (including read pulse) can be used to make high level cuts for subsequent analysis
  - Fitted pedestal will be subtracted from the asymmetry
- Use PP algorithm for diagnostics, not asymmetry calculations
- Use m1 monitor
   For spectra changes and chopper phases

![](_page_19_Figure_7.jpeg)

#### Constructing a Perfect Pulse

- Find a 16 step spin sequence that has a single dropped pulse. 1 in every 100 pulses intentionally dropped from the accelerator.
- Go over an entire run to get statistical significance for each bin, subtract the pedestal and normalize. Have what would be one stand alone pulse with wraparounds.

![](_page_20_Figure_3.jpeg)

![](_page_20_Figure_4.jpeg)

![](_page_21_Figure_1.jpeg)

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

![](_page_22_Figure_1.jpeg)

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

![](_page_23_Figure_1.jpeg)

Fitted amplitudes provide information on:

#### • Dropped pulses

- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

![](_page_24_Figure_1.jpeg)

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

![](_page_25_Figure_1.jpeg)

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

Pulse fits contain the decay into the next pulse  $\rightarrow$  can get the amplitude of the read pulse

![](_page_26_Figure_1.jpeg)

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Read pulse height
- Pulse height stability in a spin sequence
- Dynamic pedestal

![](_page_26_Figure_8.jpeg)

![](_page_27_Figure_1.jpeg)

2,200 runs = 10.7 beam days

Fitted amplitudes provide information on:

- Dropped pulses
- Lower powered pulses
- Pulse height stability in a spin sequence
- Read pulse height
- Dynamic pedestal

12 runs = 1.4 hours 198 sec Al  $\beta$  decay buildup

Aluminum  $\beta$  -delayed pedestal is ~5% of the signal. Need to properly subtract it for asymmetry calculation.

#### **Example of Beam Fluctuations**

![](_page_28_Figure_1.jpeg)

#### **Example of Beam Fluctuations**

![](_page_29_Figure_1.jpeg)

#### Chopper phases: Beam Monitor

PP runs 104266-104400 fit to run 104324, entry 193

![](_page_30_Figure_2.jpeg)

### **Chopper phases: Beam Monitor**

-m1[]:t {hq==0 && Entry\$!=0 && -m1[25]>1.5}

![](_page_31_Figure_2.jpeg)

- Fit bins 1-5 to a line
   → good linear region
   and where chopper
   opens
- Find the time bin that
   is ½ of the peak in
   the spectrum →
   normalizes by the
   section not affected
   by the chopper
   opening
- Can be converted to a time in µs and compare with chopper phases

### Chopper phases: Beam Monitor

-m1[]:t {hq==0 && Entry\$==100}

![](_page_32_Figure_2.jpeg)

- Fit bins 31-35 to a line → good linear region and where chopper opens
- Find the time bin that
   is ½ of the peak in
   the spectrum →
   normalizes by the
   section not affected
   by the chopper
   opening
- Can be converted to a time in µs and compare with chopper phases

#### Typical chop1 & chop2

![](_page_33_Figure_1.jpeg)

- RMS of 0.008 time bins =  $3.2 \,\mu$  s
  - During nominal operation, the chopper phases only change by up to  $0.3\,\mu$  s, so these are large changes
- Dominated by counting statistics
- Since m1 is before the polarizer, can cut freely since this carries no polarization

#### Summary of Algorithm

![](_page_34_Figure_1.jpeg)

![](_page_35_Picture_0.jpeg)

#### Three parallel analyses ongoing from IU, UT, ASU Developed separate algorithms to overcome analysis criteria and goals

1) Minimum amplitude: A gross cut eliminating the dropped pulses which accounts for the majority of the cut data

2) Chopper Phase: Eliminate chopper phase variations to keep data with known polarization and to get a proper  $\beta$ -delayed gamma from algorithm

3) Beam stability within a spin sequence: Eliminate pulse to pulse variations from the accelerator at the 1% level to keep data with the same statistical weight

4) Proper 16-ss: Eliminate transients, wraparounds, and bad SF spin sequences which may contain false asymmetries

Minimum Amplitude

• Chopper Phases

•  $\alpha$  variation, 1%

- a<sub>i</sub>, no cuts runs 98210 99983 hh2 Entries 4131553 .a<sub>0</sub> 10<sup>4</sup> Mean 2.217 a, 0.1337 RMS a<sub>2</sub> a, a<sub>4</sub> 10<sup>3</sup> a<sub>5</sub> a а, a, 10<sup>2</sup> 10 0.5 1.5 2 fitted amplitudes a 2.5 3 1
- Good 16-step sequence

10<sup>4</sup>

10<sup>3</sup>

10<sup>2</sup>

10

31.2

chop2<sub>4</sub> chop2<sub>5</sub> chop2

chop2<sub>7</sub> chop2

31.25

31.3

31.35

31.4

chop2[]

31.45

31.5

31.55

![](_page_37_Figure_1.jpeg)

• Minimum Amplitude

Chopper Phases

•  $\alpha$  variation, 1%

• Good 16-step sequence

31.6

• Minimum Amplitude

• Chopper Phases

•  $\alpha$  variation, 1%

![](_page_38_Figure_4.jpeg)

• Good 16-step sequence

• Minimum Amplitude

• Chopper Phases

•  $\alpha$  variation, 1%

![](_page_39_Figure_4.jpeg)

Good 16-step sequence

#### No Cuts: Asymmetry Pair 12

![](_page_40_Figure_1.jpeg)

#### Cut 1: Minimum amplitude A gross cut eliminating the dropped pulses which accounts for the majority of the cut data

![](_page_41_Figure_1.jpeg)

#### Cut 2: Chopper Phases

Chopper Phase: Eliminate chopper phase variations to keep data with known polarization and pedestal from fits

![](_page_42_Figure_2.jpeg)

#### Cut 3: Pulse to Pulse Stability

Eliminate pulse to pulse variations at the 1% level to keep data with the same statistical weight

![](_page_43_Figure_2.jpeg)

#### Cut 4: Good 16-ss

Eliminate transients, wraparounds, and bad SF spin sequences which may contain false asymmetries

![](_page_44_Figure_2.jpeg)

# Hydrogen Cuts and Asymmetry No cuts Raw Asymmetry in detector pair 12 Image: Market Procession of the pair 12 Image: Market Procesing Procession of the pair 12

![](_page_45_Figure_1.jpeg)

Cuts do not depend on polarization. Varying cuts do not change pair asymmetries

#### Hydrogen Cuts and Asymmetry

![](_page_46_Figure_1.jpeg)

### Asymmetry Definition

![](_page_47_Figure_1.jpeg)

$$A_i^{raw} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}, \text{ where } \alpha = \left[\frac{N_i^{\uparrow}}{N_i^{\downarrow}}\right] \left[\frac{N_j^{\uparrow}}{N_j^{\downarrow}}\right]$$

Any effect that manifests as a common mode beam fluctuation in the detectors are cancelled - whether they are slowly changing fluctuations or spontaneous lower powered pulses. Effects such as difference detector efficiencies and detector misalignments are suppressed in pairs.

#### Asymmetry Definition $A_{raw} = P_{tot} (A_{UD} cos \theta + A_{LR} sin \theta)$ Ideal!

![](_page_48_Figure_1.jpeg)

#### $A_{i}^{raw} = P_{tot} \left( f_{i}^{H} (G_{UD,i}^{H} A_{UD}^{H} + G_{LR,i}^{H} A_{LR}^{H}) + f_{i}^{Al} (G_{UD,i}^{Al} A_{UD}^{Al} + G_{LR,i}^{Al} A_{LR}^{Al}) \right)$

Apply polarization, spin flip efficiency, depolarization corrections ( $P_{tot}$ ), subtract Aluminum UD and LR asymmetries with appropriate fractions. Al fraction is on average 22%.

Have to **measure** PV Aluminum asymmetry and **calculate** geometric factors!

![](_page_49_Figure_0.jpeg)

### Chlorine and Analysis Methods

![](_page_50_Figure_1.jpeg)

$$A_{raw}^i = G_{UD}^i A_{UD} + G_{LR}^i A_{LR}$$

Chlorine has a known large PV gamma asymmetry – check systematics and geometry factors

Fit to the geometry factors to extract the PV  $\rm A_{\rm UD}$ 

After background subtraction, beam polarization, target depolarization, and RFSF efficiency

Preliminary result:

 $A_{UD} = 25.9 \pm 0.6 \times 10^{-6}$ 

 $A_{LR} = 0.06 \pm 0.6 \times 10^{-6}$ 

Most precise measurement to date. In agreement with other measurements

#### Aluminum Analysis

![](_page_51_Figure_1.jpeg)

-0.4

-0.5

5

10

Detector Pair

15

20

inside the LH<sub>2</sub> cryostat to complete on time. Appropriate geometry factors were calculated for this configuration

26.14 / 22

0.2458

#### **Systematics**

Other signals correlated with the polarization state or magnetic fields can create a false asymmetry and are cataloged below. Needs to be well below proposed statistical uncertainty of  $1 \times 10^{-8}$ . Instrumental asymmetries are on the order of  $1 \times 10^{-9}$ .

| False Asymmetries                                 | Correction | Uncertainty | Systematic Error        |
|---------------------------------------------------|------------|-------------|-------------------------|
| Additive Asymmetry (instrumental)                 |            |             | $< 1 \times 10^{-9}$    |
| Multiplicative Asymmetry (instrumental)           |            |             | $< 1 \times 10^{-9}$    |
| Stern-Gerlach (steering of the beam)              |            |             | $< 1 \times 10^{-10}$   |
| $\gamma$ - ray circular polarization              |            |             | $< 1 \times 10^{-12}$   |
| $\beta$ - decay in flight                         |            |             | $< 1 \times 10^{-11}$   |
| Capture on 6Li                                    |            |             | $< 1 \times 10^{-11}$   |
| Radiative $\beta$ decay                           |            |             | $< 1 \times 10^{-12}$   |
| $\beta$ - delayed Al gammas (internal + external) |            |             | $< 1 \times 10^{-9}$    |
| Total from False Asymmetries                      |            |             | $< 1 \times 10^{-9}$    |
| Relative Uncertainties                            |            |             |                         |
| Geometry Factors                                  |            | 3%          |                         |
| Polarization from Wrap-around Neutrons            |            | 0.1%        |                         |
| Target Position                                   |            | 0.03%       |                         |
| Multiplicative Correction                         |            |             |                         |
| Beam Polarization (2012-2013)                     | 0.936      | 0.005       |                         |
| Beam Polarization (2014)                          | 0.936      | 0.005       |                         |
| Beam Depolarization                               | 0.9485     | 0.041       |                         |
| RFSF Efficiency (2012-2013)                       | 0.975      | 0.003       |                         |
| RFSF Efficiency (2014)                            | 0.966      | 0.009       |                         |
| Total                                             |            |             | $\sim 2 \times 10^{-9}$ |

#### Hydrogen Asymmetry

After subtracting AI and correcting for polarization, target depolarization, and SF efficiency, we have the preliminary intermediate result after 3000 runs or 15 beam days:  $A_{UD} = -7.1 \pm 4.4 \times 10^{-8}$ 

Hydrogen running has completed: have  $\sim$ 250 beam days of Hydrogen runs that have been analyzed

![](_page_53_Figure_3.jpeg)

#### Summary

- NPDGamma completed data taking at the end of June 2014
  - Statistical error is on par with counting statistics!
- All Hydrogen and Aluminum runs have been analyzed and behavior has been explored and explained
  - Cuts applied are independent of polarization and the asymmetry
- Plans for NPDGamma
  - Publish PV asymmetry in AI needed for proper asymmetry subtraction.
  - Publish PV in n-p very soon. Results will be presented at the April meeting.
- "The preliminary result for the parity-violating asymmetry A  $_{\gamma}$  is that it is small with a statistical error of about 13 ppb"

#### The NPDGamma collaboration

P. Alonzi<sup>3</sup>, R. Alacron<sup>1</sup>, R. Allen<sup>4</sup>, S. Balascuta<sup>1</sup>, L. Barron-Palos<sup>2</sup>, S. Baeßler<sup>3,4</sup>, A. Barzilov<sup>25</sup>, D. Blyth<sup>1</sup>, J.D. Bowman<sup>4</sup>, M. Bychkov<sup>3</sup>, J.R. Calarco<sup>9</sup>, R.D. Carlini<sup>5</sup>, W.C. Chen<sup>6</sup>, T.E. Chupp<sup>7</sup>, C. Coppola<sup>12</sup>, C. Crawford<sup>8</sup>, K. Craycraft<sup>8</sup>, M. Dabaghyan<sup>9</sup>, D. Evans<sup>3</sup>, N. Fomin<sup>10</sup>, S.J. Freedman<sup>13</sup>, E. Frlež<sup>3</sup>, J. Fry<sup>11</sup>, I. Garishvili<sup>12</sup>, T.R. Gentile<sup>6</sup>, M.T. Gericke<sup>14</sup> R.C. Gillis<sup>11</sup>, K. Grammer<sup>12</sup>, G.L. Greene<sup>4,12</sup>, J. Hamblen<sup>26</sup>, C. Hayes<sup>12</sup>, F. W. Hersman<sup>9</sup>, T. Ino<sup>15</sup>, G.L. Jones<sup>16</sup>, L. Kabir<sup>8</sup>, S. Kucucker<sup>12</sup>, B. Lauss<sup>17</sup>, W. Lee<sup>18</sup>, M. Leuschner<sup>11</sup>, W. Losowski<sup>11</sup>, E. Martin<sup>8</sup>, R. Mahurin<sup>14</sup>, M. McCrea<sup>14</sup>, Y. Masuda<sup>15</sup>, J. Mei<sup>11</sup>, G.S. Mitchell<sup>19</sup>, P. Mueller<sup>4</sup>, S. Muto<sup>15</sup>, M. Musgrave<sup>12</sup>, H. Nann<sup>11</sup>, I. Novikov<sup>25</sup>, S. Page<sup>14</sup>, D.Počanic<sup>3</sup>, S.I. Penttila<sup>4</sup>, D. Ramsay<sup>14,20</sup>, A. Salas Bacci<sup>10</sup>, S. Santra<sup>21</sup>, S. Schreoder<sup>27</sup>, P.-N. Seo<sup>3</sup>, E. Sharapov<sup>23</sup>, M. Sharma<sup>7</sup>, T. Smith<sup>24</sup>, W.M. Snow<sup>11</sup>, Z. Tang<sup>11</sup>, W.S. Wilburn<sup>10</sup>, V. Yuan<sup>10</sup>

<sup>16</sup>Hamilton College <sup>1</sup>Arizona State University <sup>17</sup>Paul Scherrer Institute, Switzerland <sup>2</sup>Universidad Nacional Autonoma de Mexico <sup>18</sup>Spallation Neutron Source <sup>3</sup>University of Virginia <sup>19</sup>University of California at Davis <sup>4</sup>Oak Ridge National Laboratory <sup>20</sup>TRIUMF, Canada <sup>5</sup>Thomas Jefferson National Laboratory <sup>21</sup>Bhabha Atomic Research Center, India <sup>6</sup>National Institute of Standards and <sup>22</sup>Duke University Technology <sup>23</sup>Joint Institute of Nuclear Research, Dubna, Russia <sup>7</sup>Univeristy of Michigan, Ann Arbor <sup>24</sup>University of Dayton <sup>8</sup>University of Kentucky <sup>25</sup>Western Kentucky University <sup>9</sup>University of New Hampshire <sup>26</sup> University of Tennessee at Chattanooga <sup>10</sup>Los Alamos National Laboratory <sup>27</sup> University of Bayreuth <sup>11</sup>Indiana University <sup>12</sup>University of Tennessee This work is supported by <sup>13</sup>University of California at Berkeley DOE and NSF (USA) <sup>14</sup>University of Manitoba, Canada NSERC (CANADA) <sup>15</sup>High Energy Accelerator Research CONACYT (MEXICO) Organization (KEK), Japan BARC (INDIA)

#### Extras

#### Diagnostic Quantities

![](_page_57_Figure_1.jpeg)

#### Diagnostic Ouantities

![](_page_58_Figure_1.jpeg)

#### **Systematics**

Other signals correlated with the polarization state or magnetic fields can create a false asymmetry and are cataloged below. Needs to be well below proposed statistical uncertainty of  $1 \times 10^{-8}$ . Instrumental asymmetries are on the order of  $1 \times 10^{-9}$ .

| Systematic Effect             | Size                |  |
|-------------------------------|---------------------|--|
| Stern-Gerlach                 | $1 \times 10^{-10}$ |  |
| Circularly Polarized $\gamma$ | $1 \times 10^{-12}$ |  |
| In flight $\beta$ decay       | $1 \times 10^{-11}$ |  |
| Capture on <sup>6</sup> Li    | $1 \times 10^{-11}$ |  |
| Al Radiative $\beta$ decay    | $1 \times 10^{-9}$  |  |
| $Al A_{UD} asymmetry$         | measure             |  |
| Polarization                  | <1%                 |  |
| Target Depolarization         | < 0.5%              |  |
| SF efficiency                 | <1%                 |  |

![](_page_59_Figure_3.jpeg)

Al asymmetry is measured, then subtracted Preliminary Al measurement in 2012, more Al stats from Feb - June 2014

![](_page_59_Picture_5.jpeg)

#### Instrumental Asymmetries

![](_page_60_Figure_1.jpeg)

Instrumental effects are zero at the  $1 \times 10^{-9}$  level using beam off and LED measurements

#### Cut 3: $\alpha$ Distribution

![](_page_61_Figure_1.jpeg)

Batch H16

31% of all cut data cut here