## Jamming and the Anticrystal

Andrea J. Liu
Department of Physics \& Astronomy
University of Pennsylvania

## Carl Goodrich

Corey S. O'Hern
Leo E. Silbert
Vincenzo Vitelli
Ning Xu
Sidney Nagel

UPenn
Yale
SIUC
Leiden
USTC
U Chicago

## Glasses and the Glass Transition



Earliest glassmaking 3000BC

Glass vessels from around I500BC

- When liquid is cooled through glass transition
- Particles remain disordered
- Stress relaxation time increases continuously
- Can get 10 orders of magnitude increase in 20 K range
- When system can no longer equilibrate on a reasonable time scale, it is called a glass
- All liquids undergo glass transitions if cooled quickly enough


## Glasses Share Common Features

$\mathrm{C} / \mathrm{T}^{3}$


- Behavior of glasses is
- very different from that of crystals

- similar in all glasses, no matter how they are made
- low T behavior ascribed to quantum two-level systems


## Glasses Share Common Features




- Behavior of glasses is
- very different from that of crystals
- similar in all glasses, no matter how they are made
- low T behavior ascribed to quantum two-level systems


## Is There an OPPOSITE POLE to the Crystal?

- Perfect crystal is epitome of order at $\mathrm{T}=0$
- What is the epitome of disorder -the anticrystal-at $\mathrm{T}=0$ ?
- Why is this a useful question?
- Important for understanding glasses
- cannot get there by perturbing a crystal (ie adding defects)
- Need new way of thinking about solids
- To understand glass transition, it might help to understand what liquid is making transition to


## Jamming Transition for "Ideal Spheres"

C. S. O'Hern, S.A. Langer, A. J. Liu and S. R. Nagel, Phys. Rev. Lett. 88, 075507 (2002).
C. S. O’Hern, L. E. Silbert, A. J. Liu, S. R. Nagel, Phys.

Rev. E 68, 01I306 (2003).
$V(r)=\left\{\begin{array}{cc}\frac{\varepsilon}{\alpha}\left(1-\frac{r}{\sigma}\right)^{\alpha} & r \leq \sigma \\ 0 & r>\sigma\end{array}\right.$


1/density

Quench to local energy minimum
( $\mathrm{T}=0$ )


## Onset of Overlap has Discontinuous Character

Just below $\varphi_{\mathrm{c}}$, no particles overlap


Just above $\varphi_{c}$ there are $Z_{c}$ overlapping neighbors per particle


Durian, PRL 75, 4780 (1995).
O'Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002).

$$
\begin{array}{ll}
Z_{c}=3.99 \pm 0.01 & 2 \mathrm{D} \\
Z_{c}=5.97 \pm 0.03 & 3 \mathrm{D}
\end{array}
$$

Verified experimentally:
G. Katgert and M. van Hecke, EPL 92, 34002 (2010).

## Isostaticity

- What is the minimum number of interparticle contacts needed for mechanical equilibrium?
- No friction, N repulsive spheres, d dimensions
- Match
- number of constraints=NZ/2
- number of degrees of freedom $=\mathrm{Nd}$
- Stable if $Z \geq 2 d$

- So at overlap, sphere packing has minimum number of contacts needed for mechanical stability. Is it stable?


## Isostaticity

- What is the minimum number of interparticle contacts needed for mechanical equilibrium?
- No friction, N repulsive spheres, d dimensions
- Match
- number of constraints=NZ/2
- number of degrees of freedom $=\mathrm{Nd}$
- Stable if $Z \geq 2 d$


James Clerk Maxwell

- So at overlap, sphere packing has minimum number of contacts needed for mechanical stability. Is it stable?


## YES

## - Onset of overlap is onset of rigidity. This is the jamming transition.

Durian, PRL 75, 4780 (I995).
O’Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002).



## YES

- Onset of overlap is onset of rigidity. This is the jamming transition.

Durian, PRL 75, 4780 (I995).
O'Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002).


## Compare to crystal



- $\mathrm{G} / \mathrm{B} \rightarrow 0$ at jamming transition (like liquid)
- jammed solid marginally stable to pressure (Wyart)
- jammed state is anticrystal; opposite pole to perfect crystal
- anticrystal defined in terms of rigidity, not structure


## Marginal Stability Leads to Diverging Length Scale

M.Wyart, S.R. Nagel, T.A.Witten, EPL 72, 486 (05)
-For system at $\phi_{c}, Z=2 d$
-Removal of one bond makes entire system unstable by adding a soft mode
-This implies diverging length as $\phi->\phi_{c}{ }^{+}$


For $\phi>\phi_{c}$, cut bonds at boundary of size $L$
Count number of soft modes within cluster

$$
N_{s} \approx L^{d-1}-\left(Z-Z_{c}\right) L^{d}
$$

Define length scale at which soft modes just appear

$$
\ell_{L} \sim \frac{1}{Z-Z_{c}} \equiv \frac{1}{\Delta z} \sim\left(\phi-\phi_{c}\right)^{-0.5}
$$

## More precisely

Define $\ell^{*}$ as size of smallest macroscopic rigid cluster for system with a free boundary of any shape or size


Goodrich, Ellenbroek, Liu Soft Matter (20|3)

## More precisely

Define $\ell^{*}$ as size of smallest macroscopic rigid cluster for system with a free boundary of any shape or size


Goodrich, Ellenbroek, Liu Soft Matter (20|3)

## Vibrations in Disordered Sphere Packings

- Crystals are all alike at low T or low $\omega$
- density of vibrational states $D(\omega) \sim \omega^{d-1}$ in $d$ dimensions
- heat capacity $C(T) \sim T^{d}$
- Why?

Low-frequency excitations are sound modes. Long wavelengths average over disorder so all crystalline solids behave this way

## Vibrations in Disordered Sphere Packings

- Crystals are all alike at low T or low $\omega$
- density of vibrational states $D(\omega) \sim \omega^{d-1}$ in $d$ dimensions
- heat capacity $C(T) \sim T^{d}$
- Why?

Low-frequency excitations are sound modes. Long wavelengths average over disorder so all crystalline solids behave this way

BUT near at Point J, there is a diverging length scale $\ell_{L}$

So what happens?

## Vibrations in Sphere Packings



- New class of excitations originates from soft modes at Point J M.Wyart, S.R. Nagel, T.A.Witten, EPL 72, 486 (05)
- Generic consequence of diverging length scale: $\ell_{L} \simeq c_{L} / \omega^{*}$ * $\ell T \simeq C T / \omega^{*}$


## Vibrations in Sphere Packings

L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 09830I (‘05)



- New class of excitations originates from soft modes at Point J M.Wyart, S.R. Nagel, T.A.Witten, EPL 72, 486 (05)
- Generic consequence of diverging length scale: $\ell_{L} \simeq c_{L} / \omega^{*}$ * $\ell T \simeq C T / \omega^{*}$


## Critical Scaling near Jamming Transition

- Mixed first-order/second-order transition (RFOT)
- Number of overlapping neighbors per particle

$$
Z=\left\{\begin{array}{cc}
0 & \phi<\phi_{c} \\
Z_{c}+z_{0} \Delta \phi^{\beta \equiv 1 / 2} & \phi \geq \phi_{c}
\end{array} \quad V(r)=\left\{\begin{array}{cc}
\frac{\varepsilon}{\alpha}\left(1-\frac{r}{\sigma}\right)^{\alpha} & r \leq \sigma \\
0 & r>\sigma
\end{array}\right.\right.
$$

- Static shear modulus/bulk modulus

$$
G / B \sim \Delta \phi^{\gamma \cong 1 / 2}
$$

- Two diverging length scales

$$
\ell_{L} \sim \Delta \phi^{-v^{*} \equiv-1 / 2} \quad \ell_{T} \sim \Delta \phi^{-v^{\dagger} \equiv-1 / 4}
$$

- Vanishing frequency scale

$$
\omega^{*} / \omega_{0} \sim \Delta \phi^{\varsigma \equiv 1 / 2}
$$

A. J. Liu and S. R. Nagel, Ann. Rev. Cond. Mat. Phys. (20I0)

## Critical Scaling near Jamming Transition

- Mixed first-order/second-order transition (RFOT)
- Number of overlapping neighbors per particle

$$
Z=\left\{\begin{array}{cc}
0 & \phi<\phi_{c} \\
Z_{c}+z_{0} \Delta \phi^{\beta \Xi 1 / 2} & \phi \geq \phi_{c}
\end{array}\right.
$$

Exponents are

- independent of potential
-independent of dimension
- Static shear modulus/bulk modulı

Mean field

$$
G / B \sim \Delta \phi^{\gamma \cong 1 / 2}
$$

- Two diverging length scales

$$
\ell_{L} \sim \Delta \phi^{-v^{*} \equiv-1 / 2} \quad \ell_{T} \sim \Delta \phi^{-v^{\dagger} \equiv-1 / 4}
$$

- Vanishing frequency scale

$$
\omega^{*} / \omega_{0} \sim \Delta \phi^{\varsigma \equiv 1 / 2}
$$

A. J. Liu and S. R. Nagel, Ann. Rev. Cond. Mat. Phys. (20I0)

## Tuning from perfect order to perfect disorder

Goodrich, Liu, Nagel, Nature Phys (2014)

## Tuning from perfect order to perfect disorder




1. start with a perfect FCC crystal
$2 d$ illustration

## Tuning from perfect order to perfect disorder




1. start with a perfect FCC crystal
$2 d$ illustration
2. introduce 1 vacancy-interstitial pair

## Tuning from perfect order to perfect disorder




1. start with a perfect FCC crystal
$2 d$ illustration
2. introduce 1 vacancy-interstitial pair
3. minimize the energy

## Tuning from perfect order to perfect disorder




1. start with a perfect FCC crystal
$2 d$ illustration
2. introduce 2 vacancy-interstitial pairs
3. minimize the energy

## Tuning from perfect order to perfect disorder




1. start with a perfect FCC crystal
$2 d$ illustration
2. introduce 3 vacancy-interstitial pairs
3. minimize the energy

## Tuning from perfect order to perfect disorder




1. start with a perfect FCC crystal
$2 d$ illustration
2. introduce $M$ vacancy-interstitial pairs
3. minimize the energy

## Tuning from perfect order to perfect disorder



1. start with a perfect FCC crystal
2. introduce $N$ vacancy-interstitial pairs
3. minimize the energy

## From Order to Disorder:When does Disorder Win?


disordered


## From Order to Disorder:When does Disorder Win?

ordered

intermediate
$F_{6}=0.9$
disordered

$$
\mathrm{F}_{6}=0.1
$$





## From Order to Disorder:When does Disorder Win?



## From Order to Disorder:When does Disorder Win?


intermediate

$$
F_{6}=0.9
$$

disordered

A little disorder makes it behave like jammed solid



## Look at thoEla3nidyyof packings



Even very ordered systems behave mechanically like jammed solids

## What Have We Left Out? ALMOST EVERYTHING

- long-ranged interactions
N. Xu, et al. PRL 98 I75502 (2007).
- attractions
N. Xu, et al. PRL 98 I75502 (2007).
- 3-body interactions (e.g. bond-bending)
J. C. Phillips, J. Non-Cryst. Solids (I979), 43, 37 (I98I); M. F.Thorpe, J. Non-Cryst. Solids(I983); P. Boolchand, et al., Phil. Mag. (2005).
- temperature
Z. Zhang, et al. Nature (2009); L. Berthier and T.A.Witten, EPL (2009); K. Chen, et al. PRL (20I0);A. Ikeda, et al.J Chem Phys (20|3), T. Still, et al. PRE (20|4).
- non-spherical particle shape
Z. Zeravcic, N. Xu, A. J. Liu, S. R. Nagel,W. van Saarloos, EPL (2009), Mailman, et al. PRL (2009).
- friction
K. Shundyak, et al. PRE (2007); E. Somfai, et al. PRE (2007); S. Henkes, et al. EPL (20I0), D. Bi, et al. Nature (201I);T. Still et al. PRE (2014).


## Long-ranged interactions \& attractions



U Repulsion vanishes at finite distance

Attractions serve to hold system at high enough density that repulsions come into play (WCA)

- Point J lies inside liquid-vapor coexistence curve so it doesn't exist
- But in liquid state theory, physics is controlled by finiteranged repulsions


## Lennard-Jones Interactions

- Can treat long-ranged interactions as correction in variational theory to predict shift in boson peak frequency (and G/B)
N. Xu, M.Wyart, A. J. Liu, S. R. Nagel, PRL (2007).

- Lennard-Jones polycrystal
- For >6 crystallites, G/B closer to disordered limit than to perfect crystal



## Understanding the Scaling of G/B

| Jammed Packings | Spring Networks w/o pre-stress | Randomly cut Networks |  | Packings | Random networks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| mpress |  | $\overbrace{\downarrow}^{\text {cut }}$ |  |  |  |
|  |  |  | 产 |  |  |
|  |  |  |  | $\mathrm{G} / \mathrm{B} \sim \Delta \mathrm{Z}$ | $\mathrm{G} / \mathrm{B} \sim 1$ |
| Ellenbroek, et | al. EPL (200 |  |  | same as jamming | rigidity percolation |

## Bond Contributions to G, B

- Calculate contribution of each spring to $\mathrm{G}, \mathrm{B}$

- Distribution is continuous down to $\mathrm{B}_{\mathrm{i}}, \mathrm{G}_{\mathrm{i}}=0$ \& fairly broad
- Perfect fcc: sum of a few delta functions


## Tuning by pruning

prune bonds with smallest $B_{i}$
$G \sim$ $B \sim$
prune bonds with largest $B_{i}$
$G \sim$
$B \sim$
prune bonds with largest $G_{i}$
$G \sim$
$B \sim$

$$
G \sim \Delta Z
$$

$$
B \sim \Delta Z
$$



## Tuning by pruning

prune bonds with smallest $B_{i}$
$G \sim \Delta Z$
$B \sim$
prune bonds with largest $B_{i}$
$G \sim$
$B \sim$
prune bonds with largest $G_{i}$
$G \sim$
$B \sim$

$$
G \sim \Delta Z
$$

$$
B \sim \Delta Z
$$



## Tuning by pruning

## prune bonds with smallest $B_{i}$

$G \sim \Delta Z$
$B \sim$
prune bonds with largest $B_{i}$
$G \sim \Delta Z$
$B \sim$
prune bonds with largest $G_{i}$
$G \sim$
$B \sim$

$$
G \sim \Delta Z
$$

$$
B \sim \Delta Z
$$



## Tuning by pruning

## prune bonds with smallest $B_{i}$

$G \sim \Delta Z$
$B \sim$
prune bonds with largest $B_{i}$
$G \sim \Delta Z$
$B \sim$
prune bonds with largest $G_{i}$

$$
\begin{aligned}
& G \sim \\
& B \sim \Delta Z
\end{aligned}
$$

$$
G \sim \Delta Z
$$

random

$$
B \sim \Delta Z
$$



## Tuning by pruning

prune bonds with smallest $B_{i}$
$G \sim \Delta Z$
$B \sim$
prune bonds with largest $B_{i}$
$G \sim \Delta Z$
$B \sim$
prune bonds with largest $G_{i}$

$$
\begin{aligned}
& G \sim \\
& B \sim \Delta Z
\end{aligned}
$$

$$
G \sim \Delta Z
$$

$$
B \sim \Delta Z
$$

## Independence of bond-level response!

## Tuning by pruning

## prune bonds with smallest $B_{i}$

$G \sim \Delta Z$
$B \sim$
prune bonds with largest $B_{i}$
$G \sim \Delta Z$
$B \sim$
prune bonds with largest $G_{i}$

$$
\begin{aligned}
& G \sim \\
& B \sim \Delta Z
\end{aligned}
$$

Tune G/B I8 orders of magnitude by pruning 2\% of bonds


## Tuning by pruning

## prune bonds with smallest $B_{i}$

$G \sim \Delta Z$
$B \sim 1$
$G / B \sim \Delta Z$
prune bonds with largest $B_{i}$
$G \sim \Delta Z$
$B \sim$
prune bonds with largest $G_{i}$

$$
\begin{aligned}
& G \sim \\
& B \sim \Delta Z
\end{aligned}
$$

Tune G/B I 8 orders of magnitude by pruning 2\% of bonds

## Tuning by pruning

## jamming scaling!

## prune bonds with smallest $B_{i}$

$G \sim \Delta Z$
$B \sim 1$
$G / B \sim \Delta Z$
prune bonds with largest $B_{i}$
$G \sim \Delta Z$
$B \sim$
prune bonds with largest $G_{i}$

$$
\begin{aligned}
& G \sim \\
& B \sim \Delta Z
\end{aligned}
$$

Tune G/B I8 orders of magnitude by pruning $2 \%$ of bonds

## Tuning by pruning

## jamming scaling!

## prune bonds with smallest $B_{i}$

$$
\begin{align*}
& G \sim \Delta Z \\
& B \sim 1
\end{align*}
$$

prune bonds with largest $B_{i}$
$G \sim \Delta Z$
$B \sim \Delta Z^{\sim 9}$
$G / B \sim \Delta Z^{\sim-8}$
prune bonds with largest $G_{i}$

$$
\begin{aligned}
& G \sim \\
& B \sim \Delta Z
\end{aligned}
$$

Tune G/B I8 orders of magnitude by pruning 2\% of bonds


## Tuning by pruning

## jamming scaling!

## prune bonds with smallest $B_{i}$

$$
\begin{align*}
& G \sim \Delta Z \\
& B \sim 1
\end{align*}
$$

prune bonds with largest $B_{i}$
$G \sim \Delta Z$
$B \sim \Delta Z^{\sim 9}$
$G / B \sim \Delta Z^{\sim-8}$
prune bonds with largest $G_{i}$

$$
\begin{aligned}
& G \sim \Delta Z^{\sim 3} \\
& B \sim \Delta Z
\end{aligned}
$$

Tune G/B I8 orders of magnitude by pruning $2 \%$ of bonds


## Auxetic Materials

- Materials with $\mathrm{G} / \mathrm{B}>2 / \mathrm{d}$ in d dimensions are auxetic

https://www.youtube.com/watch?v=nDuR9hHIpZM


## Auxetic Materials

- Materials with $\mathrm{G} / \mathrm{B}>2 / \mathrm{d}$ in d dimensions are auxetic

https://www.youtube.com/watch?v=nDuR9hHIpZM


## From incompressible to auxetic

$$
\begin{gathered}
\text { Poisson's ratio } \\
\nu=\frac{d-2 G / B}{d(d-1)+2 G / B} \quad-1 \leq \nu \leq 0.5(\text { in } 3 d)
\end{gathered}
$$



Greaves et al. Nature Materials (2011)

## Macroscopic Origami/Kirigami Materials

## NewScientist

Light creates instant origami
https://www.youtube.com/watch?v=CjfhfqAvlml
Castle, et al PRL (2014)
Liu, et al. Soft matter, 201 I

## Macroscopic Origami/Kirigami Materials

## NewScientist

Light creates instant origami
https://www.youtube.com/watch?v=CjfhfqAvlml
Castle, et al PRL (2014)
Liu, et al. Soft matter, 201 I

## Macroscopic Origami/Kirigami Materials

## NewScientist

Light creates instant origami
https://www.youtube.com/watch?v=CjfhfqAvlml
Castle, et al PRL (2014)
Liu, et al. Soft matter, 201 I

## Spatially Textured Response

## $\Delta Z_{\text {initial }}=1.52$

$\Delta Z_{\text {initial }}=0.53$
$\Delta Z_{\text {initial }}=0.046$

- Can create low or zero $G$ or low or zero $B$ strips for origami/kirigami materials
- Can target any quantity that can be written as sum over bond-level contributions, e.g. thermal expansion coefficient


## Summary

- Jamming scenario provides "solid" $\mathrm{T}=0$ starting point for understanding mechanical/thermal properties of disordered solids
- jamming transition is mixed Ist/2nd order transition
- jammed state is more robust starting point than perfect crystal
- rationale for commonality in glasses, granular matter, colloidal glasses, foams, emulsions, ....
- starting point for designing disordered mechanical metamaterials


## Thanks to



Carl Goodrich


| Corey S. O'Hern | Yale |
| :--- | :--- |
| Leo E. Silbert | SIUC |
| Stephen A. Langer | NIST |
| Matthieu Wyart | NYU |
| Vincenzo Vitelli | Leiden |
| Zorana Zeravcic | Rockefeller |
|  |  |
| Wouter Ellenbroek | Eindhoven |
| Ke Chen | UPenn |
| Tim Still | UPenn |
| Doug Durian | UPenn |
| Arjun Yodh | UPenn |

Bread for Jam:
DOE DE-FG02-03ER46087

