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Glasses and the Glass Transition

• When liquid is cooled through glass transition
– Particles remain disordered
– Stress relaxation time increases continuously
– Can get 10 orders of magnitude increase in 20 K range

• When system can no longer equilibrate on a reasonable 
time scale, it is called a glass

• All liquids undergo glass transitions if cooled quickly enough

Earliest glassmaking 
3000BC

Glass vessels from 
around 1500BC



Glasses Share Common Features

• Behavior of glasses is 
– very different from that of crystals
– similar in all glasses, no matter how they are made
– low T behavior ascribed to quantum two-level systems
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Glasses Share Common Features

• Behavior of glasses is 
– very different from that of crystals
– similar in all glasses, no matter how they are made
– low T behavior ascribed to quantum two-level systems

Zeller & Pohl, PRB 
4, 2029 (1971).



Is There an OPPOSITE POLE to the Crystal?
• Perfect crystal is epitome of order at T=0
• What is the epitome of disorder —the 

anticrystal—at T=0?

• Why is this a useful question?
– Important for understanding glasses

• cannot get there by perturbing a 
crystal (ie adding defects) 

• Need new way of thinking about solids

– To understand glass transition, it might 
help to understand what liquid is making 
transition to



C. S. O’Hern, S. A. Langer, A. J. Liu and S. R. Nagel, 
Phys. Rev. Lett. 88, 075507 (2002).

C. S. O’Hern, L. E. Silbert, A. J. Liu, S. R. Nagel, Phys. 
Rev. E 68, 011306 (2003).
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Onset of Overlap has Discontinuous Character

Zc = 3.99 ± 0.01
Zc = 5.97 ± 0.03

5 4 3 2
log (φ-�φc)

3

2

1

0
6

4

2

0

8

6

4

2

α=2

α=5/2

α=2

α=5/2

3D

2D

(a)

(b)

(c)

log(φ- φc)

Z − Zc ≈ Z0 (φ −φc)
0.5

-
-
-

- - - -

Just below 
φc, no 
particles 
overlap

Just above φc 

there are Zc

overlapping 
neighbors per 
particle

Durian, PRL 75, 4780 (1995).
O’Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002).

Verified experimentally:
G. Katgert and M. van Hecke, EPL 92, 
34002 (2010).
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Isostaticity

• What is the minimum number of interparticle 
contacts needed for mechanical equilibrium?

• No friction, N repulsive spheres, d dimensions

• Match
– number of constraints=NZ/2
– number of degrees of freedom =Nd

• Stable if Z ≥ 2d

• So at overlap, sphere packing has minimum number 
of contacts needed for mechanical stability.  Is it 
stable?



Isostaticity

• What is the minimum number of interparticle 
contacts needed for mechanical equilibrium?

• No friction, N repulsive spheres, d dimensions

• Match
– number of constraints=NZ/2
– number of degrees of freedom =Nd

• Stable if Z ≥ 2d

• So at overlap, sphere packing has minimum number 
of contacts needed for mechanical stability.  Is it 
stable?

James Clerk Maxwell



YES

• Onset of overlap is onset of rigidity.  This is the 
jamming transition.
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YES

• Onset of overlap is onset of rigidity.  This is the 
jamming transition.
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Compare to crystal
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Elasticity

• G/B→0 at jamming transition (like liquid)
• jammed solid marginally stable to pressure (Wyart)

• jammed state is anticrystal; opposite pole to perfect 
crystal

• anticrystal defined in terms of rigidity, not structure



Marginal Stability Leads to Diverging Length Scale

•For system at φc, Z=2d

•Removal of one bond makes entire system 
unstable by adding a soft mode

•This implies diverging length as φ-> φc +

For φ > φc, cut bonds at boundary of size L
Count number of soft modes within cluster 

Define length scale at which soft modes just appear 

� 

Ns ≈ L
d−1 − Z − Zc( )Ld

M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

 
ℓ L ∼

1
Z − Zc

≡
1
Δz
∼ φ − φc( )−0.5



More precisely

Define ℓ* as size of smallest macroscopic rigid cluster for 
system with a free boundary of any shape or size

Goodrich, Ellenbroek, Liu Soft Matter (2013)

ℓL

Z-Zc
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Vibrations in Disordered Sphere Packings

• Crystals are all alike at low T or low ω
– density of vibrational states D(ω)~ωd-1 in d 

dimensions
– heat capacity C(T)~Td

• Why? 
Low-frequency excitations are sound modes.  Long 
wavelengths average over disorder so all crystalline solids 
behave this way 



Vibrations in Disordered Sphere Packings

• Crystals are all alike at low T or low ω
– density of vibrational states D(ω)~ωd-1 in d 

dimensions
– heat capacity C(T)~Td

• Why? 
Low-frequency excitations are sound modes.  Long 
wavelengths average over disorder so all crystalline solids 
behave this way 

BUT near at Point J, there is a 
diverging length scale ℓL

So what happens?



Vibrations in Sphere Packings

• New class of excitations originates from soft modes at 
Point J   M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

• Generic consequence of diverging length scale: ℓL≃cL/ω*

 ω * /ω0 ∼ Δφ
1/2
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L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 (‘05)
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ℓT≃cT/ω*



Vibrations in Sphere Packings

• New class of excitations originates from soft modes at 
Point J   M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

• Generic consequence of diverging length scale: ℓL≃cL/ω*

 ω * /ω0 ∼ Δφ
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ℓT≃cT/ω*



Critical Scaling near Jamming Transition

• Mixed first-order/second-order transition (RFOT)
• Number of overlapping neighbors per particle

• Static shear modulus/bulk modulus

• Two diverging length scales

• Vanishing frequency scale
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ℓ L ~ Δφ−ν*≅−1/2 ℓT ~ Δφ−ν† ≅−1/4

A. J. Liu and S. R. Nagel, Ann. Rev. 
Cond. Mat. Phys. (2010)

ω * /ω0 ~ Δφς≅1/2
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ω * /ω0 ~ Δφς≅1/2

Exponents are

•independent of potential

•independent of dimension

Mean field



Tuning from perfect order to perfect disorder

Goodrich, Liu, Nagel, Nature Phys (2014)



1. start with a perfect FCC crystal

2. introduce 1 vacancy-interstitial pair

3. minimize the energy

2d illustration

Tuning from perfect order to perfect disorder

Goodrich, Liu, Nagel, Nature Phys (2014)
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1. start with a perfect FCC crystal

2. introduce 1 vacancy-interstitial pair

3. minimize the energy
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Tuning from perfect order to perfect disorder

Goodrich, Liu, Nagel, Nature Phys (2014)



1. start with a perfect FCC crystal

2. introduce 2 vacancy-interstitial pairs

3. minimize the energy

2d illustration

Tuning from perfect order to perfect disorder

Goodrich, Liu, Nagel, Nature Phys (2014)



2d illustration

1. start with a perfect FCC crystal

2. introduce 3 vacancy-interstitial pairs

3. minimize the energy

Tuning from perfect order to perfect disorder

Goodrich, Liu, Nagel, Nature Phys (2014)



1. start with a perfect FCC crystal

2. introduce M vacancy-interstitial pairs

3. minimize the energy

2d illustration

Tuning from perfect order to perfect disorder

Goodrich, Liu, Nagel, Nature Phys (2014)



1. start with a perfect FCC crystal

2. introduce N vacancy-interstitial pairs

3. minimize the energy

2d illustration

Tuning from perfect order to perfect disorder

Goodrich, Liu, Nagel, Nature Phys (2014)



From Order to Disorder: When does Disorder Win?

F6=1.0 F6=0.1
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From Order to Disorder: When does Disorder Win?

F6=1.0 F6=0.1

A little disorder makes it behave like jammed solid



ElasticityLook at thousands of packings

Even very ordered systems behave 
mechanically like jammed solids



What Have We Left Out?  ALMOST EVERYTHING
• long-ranged interactions

N. Xu, et al. PRL 98 175502 (2007).

• attractions
N. Xu, et al. PRL 98 175502 (2007).

• 3-body interactions (e.g. bond-bending)
J. C. Phillips, J. Non-Cryst. Solids (1979), 43, 37 (1981); M. F. Thorpe, J. Non-Cryst. Solids(1983); P. 
Boolchand, et al., Phil. Mag. (2005).

• temperature
Z. Zhang, et al. Nature (2009); L. Berthier and T. A. Witten, EPL (2009); K. Chen, et al. PRL (2010); A. 
Ikeda, et al. J Chem Phys (2013), T. Still, et al. PRE (2014).

• non-spherical particle shape
   Z. Zeravcic, N. Xu, A. J. Liu, S. R. Nagel, W. van Saarloos, EPL (2009), Mailman, et al. PRL (2009).

• friction
K. Shundyak, et al. PRE (2007); E. Somfai, et al. PRE (2007); S. Henkes, et al. EPL (2010),  D. Bi, et al. 
Nature (2011); T. Still et al. PRE (2014).



Long-ranged interactions & attractions

• Point J lies inside liquid-vapor coexistence curve so it 
doesn’t exist

• But in liquid state theory, physics is controlled by finite-
ranged repulsions

L. Berthier and G. Tarjus, JCP 
134,214503 (2011)

Repulsion vanishes at finite 
distance

U

Attractions serve to hold 
system at high enough 
density that repulsions 
come into play (WCA)



Lennard-Jones Interactions
• Can treat long-ranged interactions 

as correction in variational theory 
to predict shift in boson peak 
frequency (and G/B)

• Lennard-Jones polycrystal
• For >6 crystallites, G/B closer 

to disordered limit than to 
perfect crystal

perfect crystal

Lennard-Jones glass

N. Xu, M. Wyart, A. J. Liu, S. R. Nagel, 
PRL (2007).



Understanding the Scaling of G/B

decompress

Ellenbroek, et al. EPL (2009).

B B

G G

G/B ~ ΔZ G/B ~ 1

same as
jamming

rigidity
percolation



Bond Contributions to G, B
• Calculate contribution of each spring to G, B

• Distribution is continuous down to Bi, Gi=0 & fairly 
broad

• Perfect fcc: sum of a few delta functions

3D
ΔZ=0.127
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Independence of bond-level response!
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Tune G/B 18 orders of magnitude 
by pruning 2% of bonds



G/B ⇠ �Z

Tuning by pruning

prune bonds with largest Bi

prune bonds with largest Gi

G ⇠ �Z

B ⇠ �Z⇠9

rigidity percolation (random)

jamming-like

prune bonds with smallest Bi

G ⇠ �Z

B ⇠ 1

3d

G ⇠ �Z⇠3

B ⇠ �Z

Tune G/B 18 orders of magnitude 
by pruning 2% of bonds



G/B ⇠ �Z

Tuning by pruning

prune bonds with largest Bi

prune bonds with largest Gi

G ⇠ �Z

B ⇠ �Z⇠9

rigidity percolation (random)

jamming-like

prune bonds with smallest Bi

G ⇠ �Z

B ⇠ 1

3d

G ⇠ �Z⇠3

B ⇠ �Z

jamming scaling!

Tune G/B 18 orders of magnitude 
by pruning 2% of bonds



G/B ⇠ �Z

Tuning by pruning

prune bonds with largest Bi

prune bonds with largest Gi

G ⇠ �Z

B ⇠ �Z⇠9
G/B ⇠ �Z⇠�8

rigidity percolation (random)

jamming-like

prune bonds with smallest Bi

G ⇠ �Z

B ⇠ 1

3d

G ⇠ �Z⇠3

B ⇠ �Z

jamming scaling!

Tune G/B 18 orders of magnitude 
by pruning 2% of bonds



G/B ⇠ �Z

Tuning by pruning

prune bonds with largest Bi

prune bonds with largest Gi

G ⇠ �Z

B ⇠ �Z⇠9
G/B ⇠ �Z⇠�8

rigidity percolation (random)

jamming-like

prune bonds with smallest Bi

G ⇠ �Z

B ⇠ 1

3d

G/B ⇠ �Z⇠2G ⇠ �Z⇠3

B ⇠ �Z

jamming scaling!

Tune G/B 18 orders of magnitude 
by pruning 2% of bonds



Auxetic Materials

• Materials with G/B > 2/d in d dimensions are auxetic

https://www.youtube.com/watch?v=nDuR9hHIpZM
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• Materials with G/B > 2/d in d dimensions are auxetic
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Greaves et al. Nature Materials (2011)

From incompressible to auxetic

Poisson’s ratio

� =
d� 2G/B

d(d� 1) + 2G/B
�1  �  0.5 (in 3d)

• Disordered networks can 
cover the entire range of 
allowed values

• Same density and 
connectivity at auxetic and 
incompressible limits—new 
physics

• procedure is experimentally 
natural

maximally auxetic limit

incompressible limit



Macroscopic Origami/Kirigami Materials

Castle, et al PRL (2014) https://www.youtube.com/watch?v=CjfhfqAv1mI

Liu, et al. Soft matter, 2011
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Spatially Textured Response

• Can create low or zero G or low or zero B strips for 
origami/kirigami materials

• Can target any quantity that can be written as sum over 
bond-level contributions, e.g. thermal expansion coefficient

ΔZinitial=1.52 ΔZinitial=0.53 ΔZinitial=0.046



Summary

• Jamming scenario provides “solid” T=0 starting point for 
understanding mechanical/thermal properties of disordered 
solids
– jamming transition is mixed 1st/2nd order transition
– jammed state is more robust starting point than perfect 

crystal
– rationale for commonality in glasses, granular matter, 

colloidal glasses, foams, emulsions, ….

– starting point for designing disordered mechanical 
metamaterials
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