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What is this? 



People! 

A. Seyfried, O. Passon, B. 
Steffen, M. Boltes, T. 
Rupprecht and W. Klingsch 
New insights into 
pedestrian flow through 
bottlenecks 
arXiv:physics/0702004 



Human “particle systems” on a large scale 



Human “particle systems” on a large scale 

Emergent “particle” behaviors in crowds: 
 
• compression waves  
  

 
• vortices  

 
  
• “fingering instability” 

 
  
• jamming transitions 

 

How seriously can these 
similarities be taken? 

https://www.youtube.com/watch?v=nkoLr2Tx_OY&t=12s


The “social force” model 

and a repulsive “social force” that keeps pedestrians from colliding: 

What is the interaction law V? 

Helbing and Molnar’s guess: 
...the literature has 
many more “guesses” 

An overdamped “goal force” that pulls pedestrians to their goal: 
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Can we measure the pedestrian 
interaction law? 

Start with data: 

college campus, 
sparse unidirectional 

college campus, 
sparse bidirectional 

college campus,  
moderate multidirectional 

controlled experiment, 
dense unidirectional 

Correlating acceleration with relative position is too hard: 

...try a probabilistic description 
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Pair distribution function 

Look for statistical suppression of certain 
configurations: 
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Result (from “natural” settings): 

Interaction 
depends on 
relative 
velocity! 
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e.g., a classical gas of 
repulsive particles 



Anticipatory interaction 

Define τ = projected time to collision 

Interaction between 
people is influenced by 
anticipation effects: 

noticeable acceleration 
when approaching head-on, 
even at large separation 

no acceleration when 
walking side-by-side, even 
at small separation 

Interaction 
is a function 
of τ only! 
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The interaction “energy” 

At small τ, pair interaction produce a 
strong suppression of g(τ) 

Define a Boltzmann factor: ]"k"/)(exp[)( BTVg  
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Simulating pedestrians 

Natural choice for simulating dynamics: 

UF 

Simulation reproduces statistical distributions: 

...other methods do not: 



Simulating pedestrians 

Reproduces known relationship between pedestrian density and speed: 



Simulations: 
Lane formation: 

arching: 

vortices: 



Flocking 
What if pedestrians have no “goal force”, but only a preferred walking speed? 



...Also represents a fast algorithm for large-scale crowd simulation 



Part 2: The Price of Anarchy 
in congestible networks 

How do we choose between discrete paths when the transit time 
depends on what other people are choosing? 
 
How efficient are our choices? 

A B 

? 



Pigou’s example 

c1 = 10 

c2(x2) = x2 

goal start 

B A 

“Nash Equilibrium” : 

Arthur Pigou, 
1920 

10C



c1(x1) = 10 

c2(x2) = x2 

goal start 

B A 

How do you optimize the performance of  the network? 

Look for the minimum of    

“Price of  Anarchy”: 2.5 minutes = 33% 

The “price of anarchy” 
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A 

Nash Equilibrium: 

 

True optimium: 

 

Traffic can improve when a road is closed 

B 

Braess’s Paradox 
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San Francisco: Seoul: 



On the road: 



In computer networks: 



In power transmission: 



In health care: 



In sports: 

F = 0.33 F = 0.38 



What happens when “congestible” and “incongestible” roads 
are combined into a lattice? 

Pigou’s example: 
c1(x1) = 1 

c2(x2) = x2 
current in = 1 current out = 1 

Model: 
prob. p prob. 1-p 

total 

current 

in = 1 

total 

current 

out = 1 

(Periodic 
boundary 
conditions in 
the y direction.) 

Every current path 
has the same 
number of steps. 

What is the POA 
as a function of p? 



Traffic networks as electrical circuits 

c(x) = 1 
V(I) = const. 

traffic   →  current,   commute time  →  voltage drop 

Finding the traffic pattern can be mapped onto a problem of electrical circuits:  

→ → 
c(x) = x 

V(I) = IR 

“Kirchoff’s Laws”: 

current in = current out 

A B 

c1 

c2 

xi 

xj xn 

xm 

All paths between A and B have the same voltage drop 

c1 = c2 

xi + xj = xm + xn 

Solving the circuit produces the equilibrium result 



Optimum flow in the circuit model 
Optimizing commute time across two paths: 

c1(x1) = a1 + b1x1 

A B 

c2(x2) = a2 + b2x2 

Total commute time: 
C = x1 c1(x1) + x2 c2(x2) 

Optimize: 
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Circuit analog: 



Optimum flow in the circuit model 
Optimizing commute time across two paths: 

c1(x1) = a1 + b1x1 

A B 

c2(x2) = a2 + b2x2 

Total commute time: 
C = x1 c1(x1) + x2 c2(x2) 

Optimize: 
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Circuit analog: 

Optimal currents arise when 
“resistance” is doubled. 



A voltage-resistor-diode circuit 

c(x) = 1 
V(I) = 1 

All currents must be positive 

→ 

Circuit elements have diodes: 

x1 > 0 I  > 0 

c(x) = -1 
V(I) = -1 

 

x1 < 0 I  < 0 

→ → 

c(x) = 1 
V = 1 

c(x) = x 
R = 1 

Must find the configuration of each diode that gives a valid solution of 
Kirchoff’s equations.  

Solution is guaranteed to be unique: 
There is only one equilibrium, and one optimum. 



Numerical procedure 

• For a given p, randomly assign the network links 

 

• Map the network onto a battery-resistor-diode circuit 

 

 equilibrium:   optimum: 

 

• Search numerically for the correct configuration of diodes and the 
currents {xi} 

 

• Calculate the total commute time: 

 

 

• Define the “price of anarchy”: 
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Results: the price of anarchy 

network is uniform 
 POA is 1 
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Results: the price of anarchy 
percolation 
threshold 

At p < pc 
fast  
congestible 
roads form 
only finite 
clusters 

At p > pc 
“percolating” 
pathways of 
congestible 
roads connect 
system edges 

At p = pc, a single pathway 
exists connecting system edges 

The POA is 
maximized at 

the percolation 
threshold 



POA for a 3D lattice 
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pc 

instead of: 



Current paths 
p = 1: uniform lattice 

same 
current in 
every link: 

x = 1/2L 

Commute 
time: 

C = x ∙ 2L = 1 



Current paths at p > pc 
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Commute time 
is constant at   

L →∞ 

percolating network of fast, 

congestible roads 



Current paths at p < pc 

ξ|| 
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Commute time 
grows extensively 
with system size 



“Holes” in the current path 
pc < p < 1: small concentration of slow incongestible roads 

Showing 
all roads 
with x > 0 

small holes 
start to 
open in the 
current 
paths 



“Holes” in the current path 
p ~ pc, equilibrium 

Showing 
all roads 
with x > 0 

ξ|| 

ξ┴ 

macroscopic 
holes 



“Holes” in the current path 
p ~ pc, optimum 

Showing 
all roads 
with x > 0 



Current paths 
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Critical Scaling 

  )(~ cpp

In the presence of large “percolation clusters” 

system properties can be written as 
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Some open questions: 

• Is there a more general connection between 
percolation and network inefficiency? 

 

                Can we exploit it to improve networks? 
 

 
• What happens when the cost functions become 

nonlinear? 
 

         e.g. 
 

 
• Is user ignorance a good thing or a bad thing? 

 
informed 
drivers: 

ignorant 
drivers: 

commute 
time 

# cars 



Conclusions 
• Part 1: The interaction “energy” between pedestrians in a 

crowd is   V ~ 1/(time to collision)2 
 

 

 
 

 

• Part 2: The price of anarchy in a model network is 
maximized at the percolation threshold for congestible links 
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Thank you. 
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velocity-resolved pair distribution 
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“hallway” scenario – simulation college campus – real data 



pair distribution for τ = ∞ 
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Outdoor

Bottleneck



More videos 
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Scaling 
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Critical exponents in DP 
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