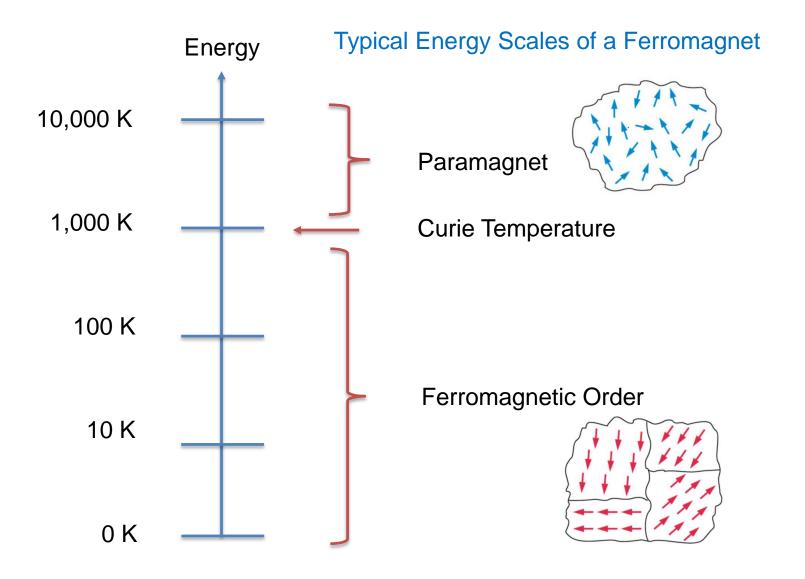
The Bulk-Edge Correspondence for Abelian Quantum Hall States

Michael Mulligan Station Q/UCSB

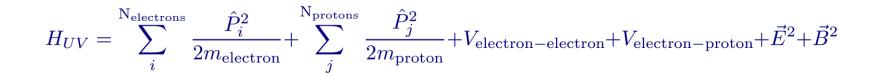
In collaboration with Jennifer Cano, Meng Cheng, Michael Freedman, Chetan Nayak, Eugeniu Plamadeala, and Jon Yard

(i) Phys. Rev. B 88, 045131 (2013)
(ii) ArXiv: 1310.5708
(iii)Work in Progress

Physics is Organized by Scale

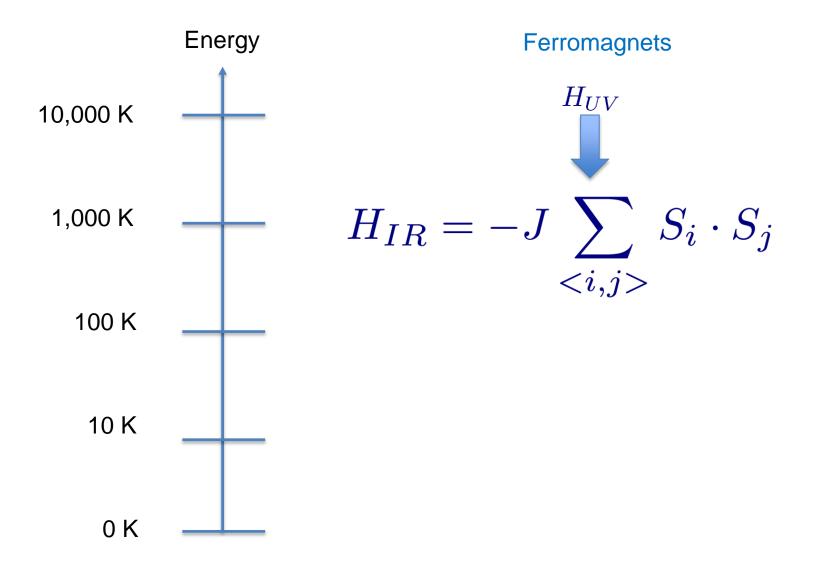


The Mother of All Effective Hamiltonians



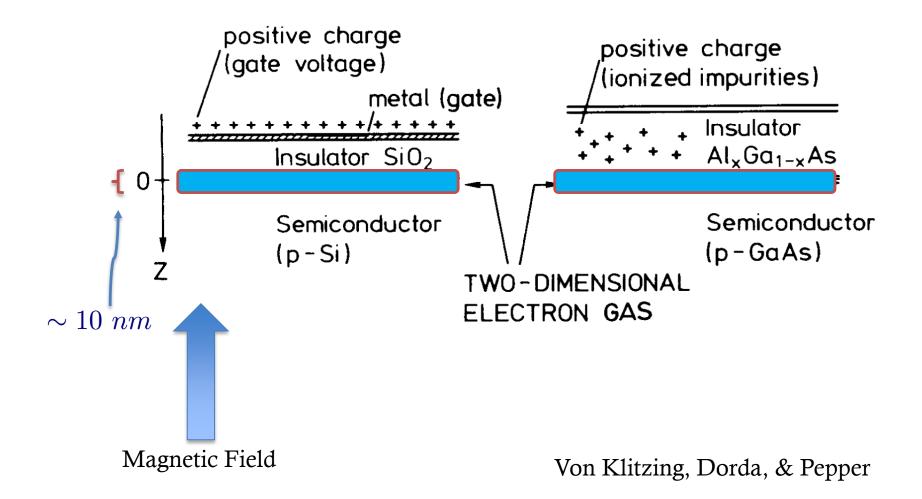
$$N_{\rm electrons} \sim N_{\rm protons} \sim 10^{23}$$

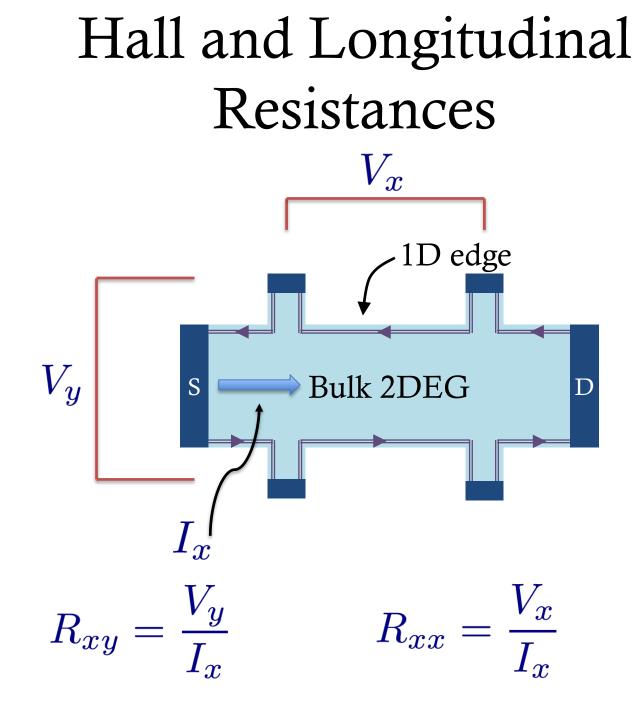
Effective Hamiltonians



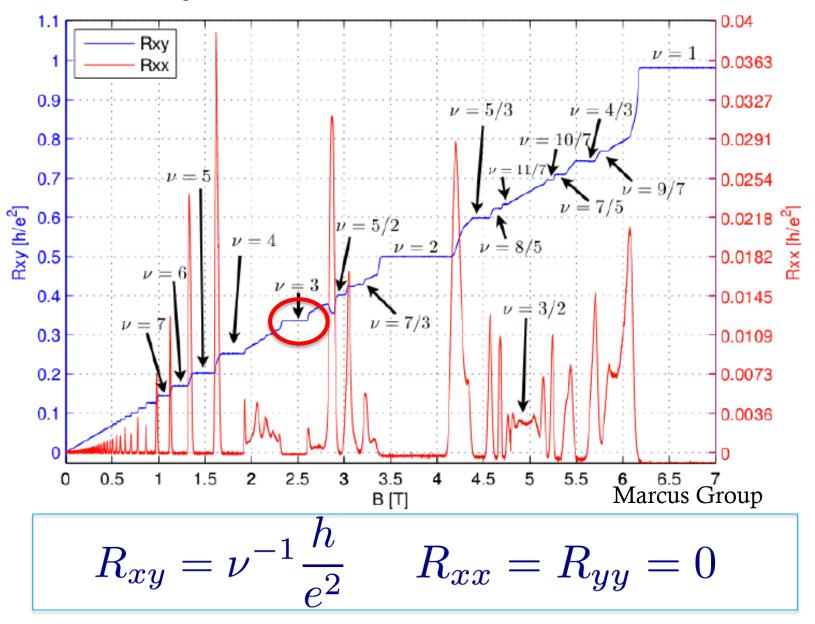


2D Electron Gas in a B Field

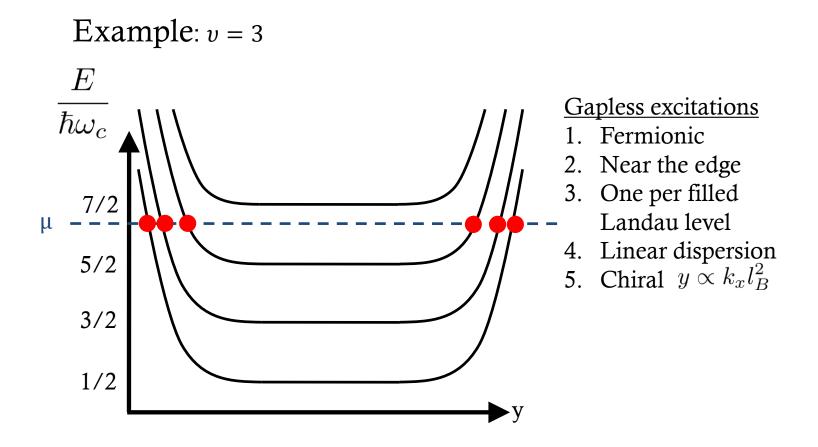




Quantum Hall Effect



Integer Quantum Hall Edge Modes

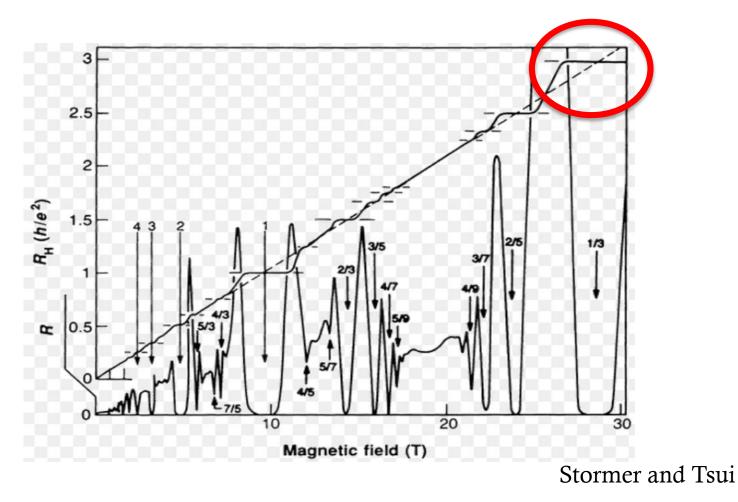


Landau levels bend up near the edge of a sample and intersect the chemical potential

Halperin 1982

Fractional Quantum Hall Effect

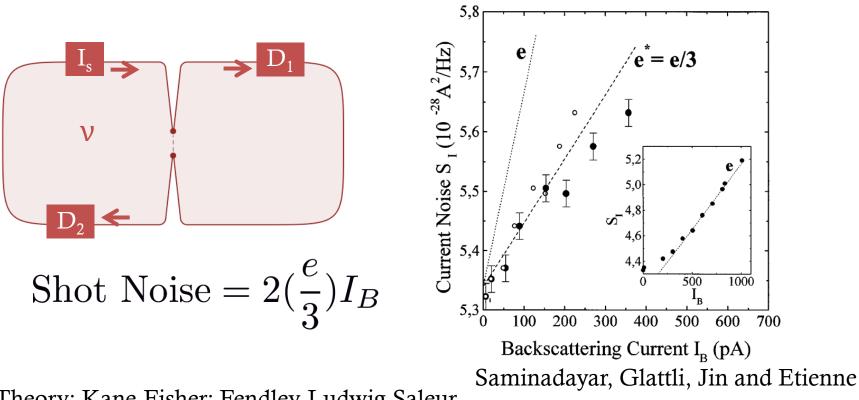
Example: v = 1/3



Topological Order and Experimental Signatures

1. Fractionalization of Charge: e/3 Quasiparticles

Observed in Shot Noise or current fluctuation Measurements



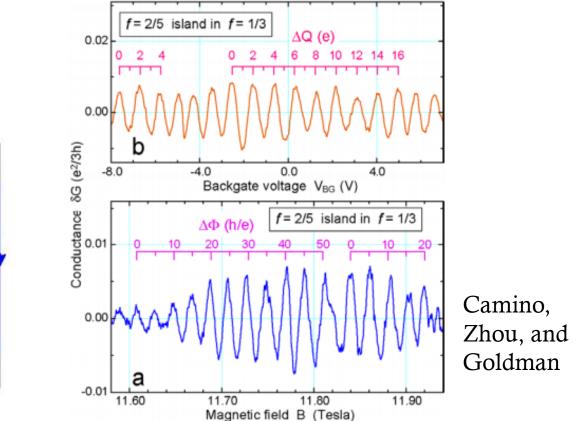
Theory: Kane-Fisher; Fendley-Ludwig-Saleur

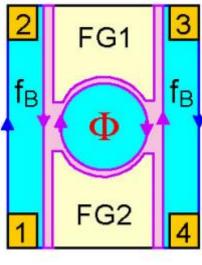
Experimental Signatures

1. Anyonic Statistics – generalization of Bose-Fermi statistics

$$\psi(x_1, x_2, ...) \to e^{\frac{\pi i}{3}} \psi(x_2, x_1, ...)$$

'Indications'/'encouragement' of its observance in interferometry





Numerical Signatures

Topology-dependent ground state degeneracy

Not observable in actual experiments as you need to fabricate a torus in the lab

Useful in numerics

Wen

(\mathbf{Z}_4 top order)

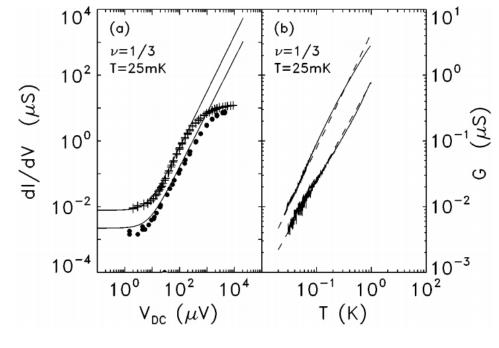
Edge States Provide a Window into the Bulk Physics

Tunneling into the edge from a metallic lead

 $I \sim V^3$

Compared with v = 1

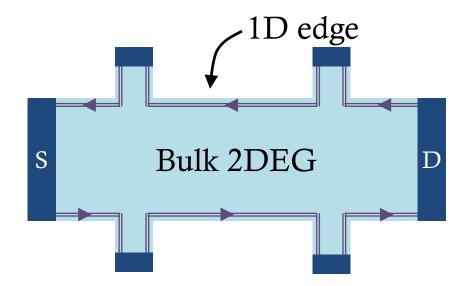
 $I \sim V$



Exp: Chang, Pfeiffer, West

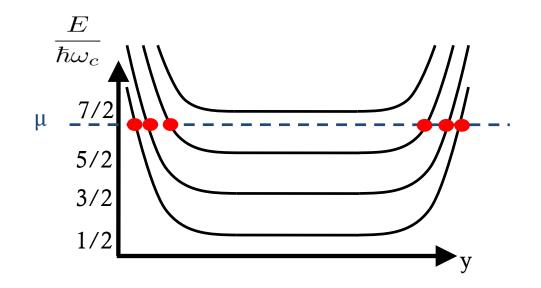
Theory: Kane-Fisher; Fendley-Ludwig-Saleur

When can multiple, distinct edges bound the same bulk phase?



Experimentally relevant examples bulks with distinct edge phases include (cleanest signatures): IQH $\nu \ge 8$, FQH $\nu = 8/3$, 16/5, 16/7, ...

Integer Quantum Hall Edge



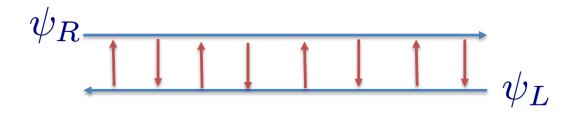
$$S_{\nu=n} = \int dt dx \ \sum_{i=1}^{n} (\psi_{R}^{(i)})^{\dagger} i(\partial_{t} - v_{i} \partial_{x}) \psi_{R}^{(i)}$$
$$\psi_{R}^{(i)}(x) \psi_{R}^{(j)}(y) = (-1) \psi_{R}^{(j)}(y) \psi_{R}^{(i)}(x)$$

Non-Chiral Integer Edge

$$S_{\nu=1+\nu=-1} = \int dt dx \, \left[\psi_R^{\dagger} i (\partial_t - v_R \partial_x) \psi_R + \psi_L^{\dagger} i (\partial_t + v_L \partial_x) \psi_L \right]$$

Chiral edges are stable, non-chiral edges are generically unstable.

$$\delta S_{\nu=1+\nu=-1} = M \int dt dx \, \left[\psi_R^{\dagger} \psi_L + \psi_L^{\dagger} \psi_R \right]$$



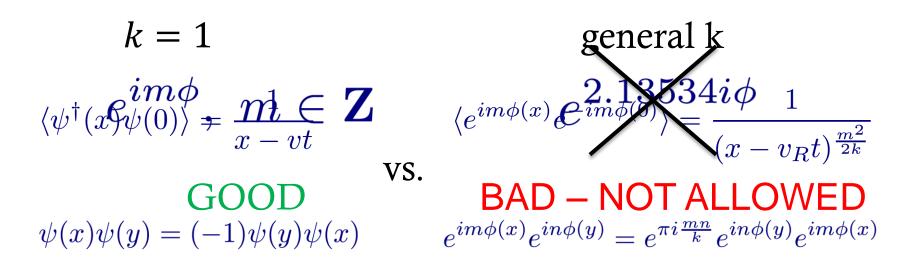
Fractional Quantum Hall Edges

$$S_{\nu=1/k} = \int_{k} dt dx \left[\psi_{R}^{\dagger} \psi_{O_{t}} - \psi_{R} \partial_{v} \psi_{R} + f[k] \lim_{\epsilon \to 0} (\psi_{R}^{\dagger} \psi_{R})(x)(\psi_{R} \psi_{R})(x) + \epsilon \right] dt dx \left[\partial_{x}^{\epsilon} \phi(\partial_{t} - \psi_{R} \partial_{x}) \phi \right]$$

Bosonization:

$$\begin{split} \psi_R \leftrightarrow e^{ik\phi} \\ \psi_R^{\dagger} i(\partial_t \partial_t \psi_R \partial_{\phi}) \psi_R \partial_x^{\dagger} (\frac{1}{\sqrt{4\pi}} \partial_x \phi) (\underline{\partial}_{t0} - \partial_x) \phi \\ \lim_{\epsilon \to 0} (\psi^{\dagger} \psi)(x) (\psi^{\dagger} \psi)(x+q) \Leftrightarrow \underbrace{\frac{(k-1)}{4\pi}}_{\nu = 1/k} \partial_x \phi(\partial_t - \partial_x) \phi \\ \hline \nu = 1/k \end{split}$$

Fractional Quantum Hall Edge $S_{\nu=1/k} = \frac{k}{4\pi} \int dt dx \left[\partial_x \phi (\partial_t - v_R \partial_x) \phi \right]$ $\phi \equiv \phi + 2\pi$



Multiple Edge Modes

$$S = \frac{1}{4\pi} \int dt dx \left[K_{IJ} \partial_x \phi_I \partial_t \phi_J - V_{IJ} \partial_x \phi_I \partial_x \phi_J + 2t_I \epsilon_{\mu\nu} \partial_\nu \phi_I A_\mu \right]$$

right-moving modes - # left-moving modes = signature of K_{IJ}

$$\nu = 0$$

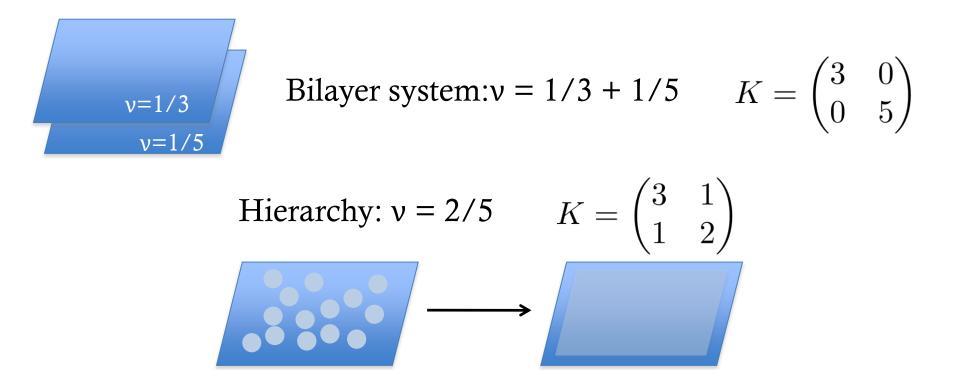
$$\nu = t_I (K^{-1})^{IJ} t_J$$

Wen Int. J. Mod. Phys. B6 1711 (1991)

Examples of K-matrices

IQH: $\nu = N$ $K = \mathbb{I}_N$

Laughlin: v = 1/m K = (m)



Bulk-Edge Correspondence

$$S = \frac{1}{4\pi} \int dt dx \left[K_{IJ} \partial_x \phi_I \partial_t \phi_J - V_{IJ} \partial_x \phi_I \partial_x \phi_J + 2t_I \epsilon_{\mu\nu} \partial_\nu \phi_I A_\mu \right]$$

$$parity(K_{IJ})$$

$$\kappa_{xy} \sim \text{signature}(K_{IJ})$$

$$\sigma_{xy} = t_I (K^{-1})^{IJ} t_J \frac{e^2}{h}$$

$$quasiparticles \leftrightarrow m_I$$

$$charge(m_I) = m_I (K^{-1})^{IJ} t_J$$

$$statistics(m_I, n_J) = \exp(2\pi i m_I (K^{-1})^{IJ} n_J)$$

$$S_{CS} = \int dt dx dy \ \epsilon_{\mu\nu\rho} \left[\frac{K_{IJ}}{4\pi} a_{\mu} \partial_{\nu} a_{\rho} + 2t_I A_{\mu} \partial_{\nu} a_{\rho} \right]$$

Redundancy of Edge (and Bulk) Descriptions

Are these two theories the same (ignoring the charge vector)?

$$K_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad K_{2} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Yes.
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Same operators and scaling dimensions; preserves excitation spectrum

 $K_2 = W^{tr} K_1 W, \ W \in GL(n, \mathbf{Z})$

Read, PRL 65 1502 (1990); Fröhlich and Thiran J. Stat. Phys. 76, 209 (1994)

Distinct classes of K-matrices can (almost always) be distinguished by their scaling dimensions

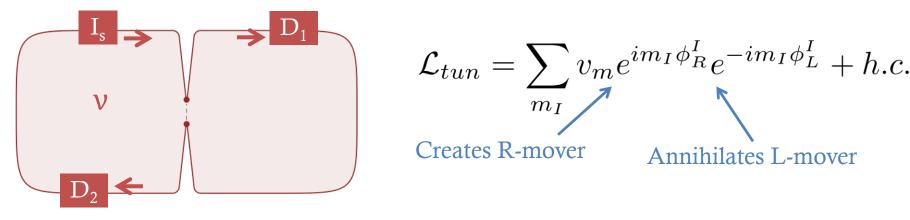
Plamadeala, Nayak, MM

If K is chiral, scaling dimensions are universal: $\langle e^{im_I \phi^I(0,t)} e^{-im_J \phi^J(0,0)} \rangle \sim \frac{1}{t^{\Delta_m}}$ Scaling dimension: $\Delta_m = \frac{1}{2} m_I K_{IJ}^{-1} m_J$

When K is non-chiral, Δ depends on V-matrix

Scaling dimensions can be used to physically distinguish edge phases

1) Tunneling across a QPC



Many terms: most relevant minimizes $mK^{-1}m$

Expect most relevant term to dominate backscattered current:

$$I_b \propto |v_m|^2 V^{2mK^{-1}m-1}$$

Chamon, Freed Wen (1994) Kane and Fisher (1992)

Scaling dimensions can be used to physically distinguish edge phases

2) Tunneling from I_s a metallic lead \downarrow D_1

Tunnel one electron: $\mathcal{L}_{lead} = t_m \psi_{lead}^{\dagger} e^{im_I \phi_R^I}$ $mK^{-1}t = 1$

Tunnel two electrons: $\mathcal{L}_{lead} = t_m \psi_{lead}^{\dagger} \partial \psi_{lead}^{\dagger} e^{im_I \phi_R^I}$ $m K^{-1} t = 2$

Most relevant term minimizes $mK^{-1}m + n^2$

$$I_{lead} \propto |t_m|^2 V^{mK^{-1}m + n^2 - 1} \mathcal{L}$$

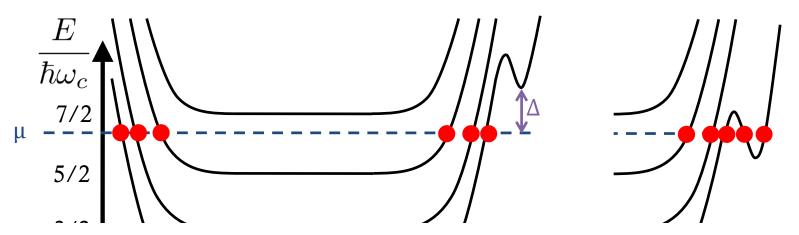
Tunnel *n* electrons: $\mathcal{L}_{lead} = t_m \left[\psi_l^{\dagger} \partial \psi_l^{\dagger} \partial^2 \psi_l^{\dagger} \dots \right] e^{im_I \phi_R^I}$ $mK^{-1}t = n$

Chamon, Freed Wen (1994) Kane and Fisher (1992)

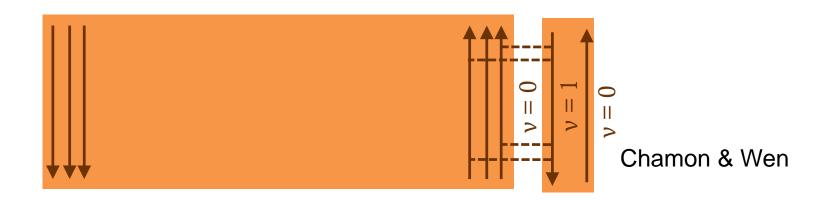
EDGE PHASE TRANSITIONS

Plamadeala, MM, & Nayak Cano, Cheng, MM, Nayak, Plamadeala, & Yard

The confining potential matters



Can interactions with gapped edge modes change the phase of the edge?



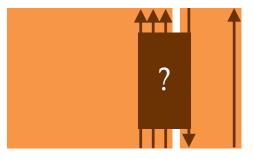
Append the New Modes to the Existing K-matrix

I.

$$\begin{array}{cccc} K \to K \oplus \sigma_z \\ t \to (t, 1, 1) \end{array} \begin{pmatrix} 1 & 2 & 3 & \cdots \\ 2 & 5 & 7 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 3 & \cdots & 0 & 0 \\ 2 & 5 & 7 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 \end{pmatrix} \\ \mathbf{v} = 1 \text{ strip} \end{array}$$

(New quasiparticles $e^{i\phi_{N+1}}$, $e^{i\phi_{N+2}}$ are electrons)

When could inter-edge tunneling open a gap?



Given an inter-edge Tunneling Operator:

 $e^{in_I\phi_I} + h.c. \propto \cos(n\phi)$

Requirements on the Operator

Conserves Electrical Charge Spin-0:

$$n_I K_{IJ}^{-1} t_J = 0$$

 $n_I K_{IJ}^{-1} n_J = 0$

→ Not met for a chiral edge. Example:

$$K = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \xrightarrow{n_{I}(K^{-1})^{IJ}n_{J}} = \frac{n_{1}^{2}}{3} + n_{2}^{2} - n_{3}^{2} = 0$$
$$\longleftrightarrow n_{1} = 0$$
Haldane *PRL* 74 2090 (1995)

Edge Transitions: Example 1

$$K_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 11 \end{pmatrix}, t_{1} = (1, -1)^{T}$$
Enlarge: $K_{1} \rightarrow K_{1} \oplus \sigma_{z}$ $t_{1} \rightarrow (1, -1, 1, 1)^{T}$
1)

$$S' = \int dx dt u' \cos(\phi_{3} + \phi_{4})$$
2)

$$S'' = \int dx dt u'' \cos(\phi_{1} - 11\phi_{2} + 2\phi_{3} + 4\phi_{4})$$
 $n = (1, -11, 2, 4)$
Strategic variable
change $\phi = W\phi'$ $(for K_{2} \oplus \sigma_{z})$
 $K_{2} = \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix}$

Is the resulting theory the same or different?

Example, cont

Different!

1) Most relevant term: $u' \cos(\phi_3 + \phi_4)$ 2) Most relevant term: $u'' \cos(\phi'_3 + \phi'_4)$

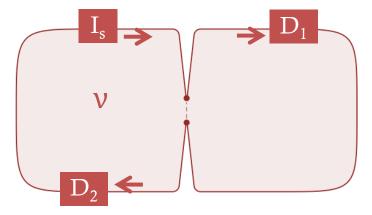
$$K_1 = \begin{pmatrix} 1 & 0 \\ 0 & 11 \end{pmatrix}, t_1 = (1, -1)^T \qquad K_2 = \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix}, t_2 = (-1, -2)^T$$

Are these phases distinct? $\Delta = \frac{1}{2}m_I K_{IJ}^{-1}m_J$ $\Delta_{min} = 1/11$ $\Delta_{min} = 3/11$

Tunneling Distinguishes the Edges

Example, cont

1) Tunneling across a QPC



2) Tunneling from
$$I_s$$

a metallic lead \downarrow D_1

$$I_b \propto V^{2\Delta_{min}-1}$$

$$K_1 \rightarrow I_b^{(1)} \propto V^{-9/11}$$

$$K_2 \rightarrow I_b^{(2)} \propto V^{-5/11}$$

Both edges have a charge *e* operator, but different scaling dimensions

$$I_{lead} \propto |t_m|^2 V^{mK^{-1}m}$$

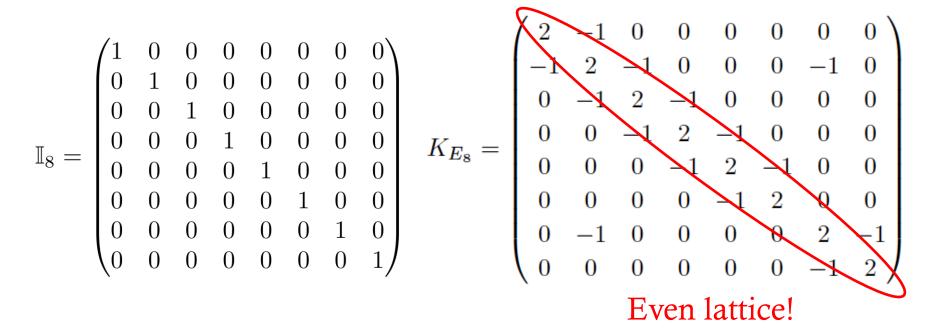
$$K_1 \to I_{lead}^{(1)} \propto V \quad K_2 \to I_{lead}^{(2)} \propto V^3$$

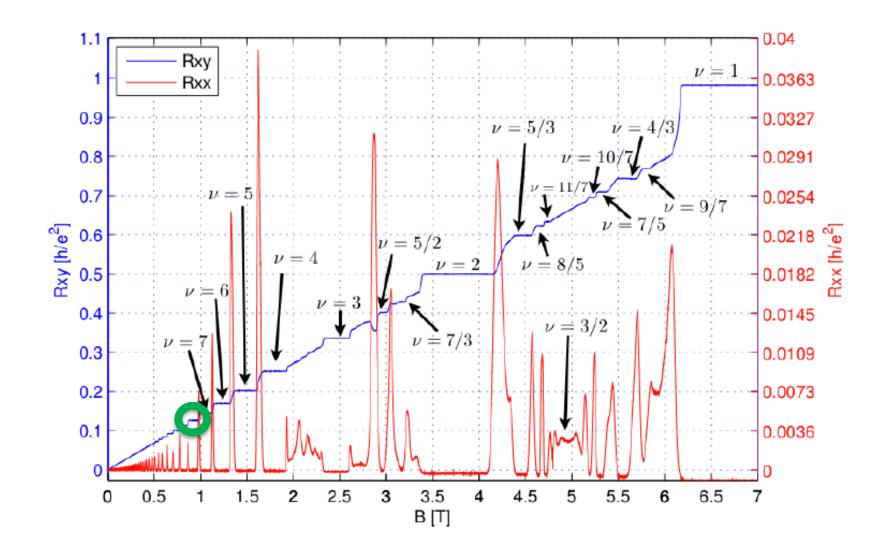
Edge Transitions: Example 2 Bose-Fermi Transitions

 $K_{\text{odd}} \oplus \sigma_z = W^T (K_{\text{even}} \oplus \sigma_z) W$

Example

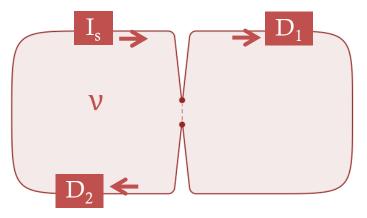
IQH $\nu = 8$: $K = \mathbb{I}_8$ $W_8^T (K_{E_8} \oplus \sigma_z) W_8 = \mathbb{I}_8 \oplus \sigma_z$





Can distinguish experimentally between candidate v = 8 phases

1) Tunneling across a QPC



$$I_b \propto V^{2\Delta_{min}-1}$$

 $\mathbb{I}_8 \to I_b \propto V$ (electron tunneling)

 $K_{E_8} \rightarrow I_b \propto V^3$ (charge 2*e* tunneling of composite particle)

Can distinguish experimentally between candidate v = 8 phases



In I_8 state tunnel one electron:

$$\mathcal{L}_{lead} = t_m \psi_{lead}^{\dagger} e^{i\phi_I}$$

$$I_{lead} \propto V$$

 E_8 state does not have a charge *e* operator!

Tunnel two electrons from lead:

Spin-polarized:
$$\mathcal{L}_{lead} = t_m \psi_{lead}^{\dagger} \partial \psi_{lead}^{\dagger} e^{im_I \phi_R^I} \quad I_{lead} \propto V^5$$

Not spin-polarized: $\mathcal{L}_{lead} = t_m \psi_{lead,\uparrow}^{\dagger} \psi_{lead,\downarrow}^{\dagger} e^{im_I \phi_R^I} I_{lead} \propto V^3$

Physical Criteria for Distinct Edges

When do distinct edge phases exist for a given bulk?

Answer:

- Two distinct edges (different tunneling exponents) can border the same bulk when the braiding matrix for the bulk quasiparticles inferred from the edge modes is the same.
- The edge transition does not necessarily preserve the total number of edge modes.
- It may be necessary to add additional v = 1 modes.

MATHEMATICAL FORMULATION

Equivalence class of K-matrices = lattice

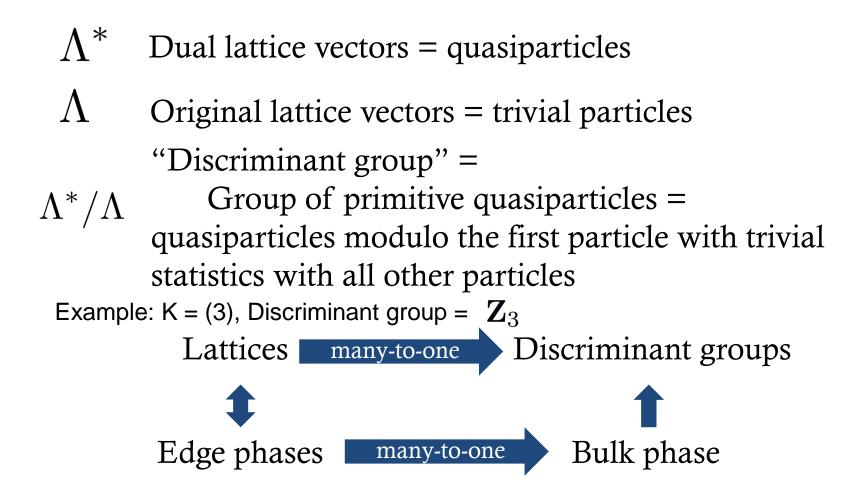
Lattice $\Lambda = \{m_I \mathbf{e}_I | m_I \in \mathbb{Z}\}$ K-matrix $K_{IJ} = \mathbf{e}_I \cdot \mathbf{e}_J$ Example: K = (3) $\implies \Lambda = \sqrt{3Z}$ Edge phase = lattice = K-matrix equivalence class Choose new basis: $\Lambda = \{m_I \mathbf{e}'_I | m_I \in \mathbb{Z}\}$ $K'_{I,I} = \mathbf{e}'_I \cdot \mathbf{e}'_I$ $W^T K W = K'$

Quasiparticles and Operators $\Lambda^* = \{m_I \mathbf{f}_I | m_I \in \mathbb{Z}\}$ $f_a^I = (K^{-1})^{IL} e_{La}$ Example: K = (3), $\Lambda^* = \frac{1}{\sqrt{3}} \mathbf{Z}$

Inner product (statistics) scaling dimension (on diagonal)

$$\mathbf{f}_{I} \cdot \mathbf{f}_{J} = K_{IJ}^{-1}$$
$$S_{m,m'} \propto e^{-2\pi i m^{T} K^{-1} m'}$$

Want to classify a bulk phase by its "primitive" quasiparticles



Stable Equivalence



Edges Are Stably Equivalent if ...

$\Lambda_1^*/\Lambda = \Lambda_2^*/\Lambda$

$$f_I^{(1)} \cdot f_J^{(1)} = f_I^{(2)} \cdot f_J^{(2)} + \text{mod } 2$$

Chiral transitions if:

signature(
$$\Lambda_1$$
) = signature(Λ_2)

Nikulin Math. USSR Izv. 14, 103 (1980)

Formalize the odd-even correspondence

Utilize another theorem from Nikulin:

For every fermionic bulk phase, there is a corresponding* edge phase which yields the same** bulk quasiparticles and statistics and has no gapless charge *e* operator

Caveats *might have different number of edge modes **mod *e*

Nikulin Math. USSR Izv. 14, 103 (1980)

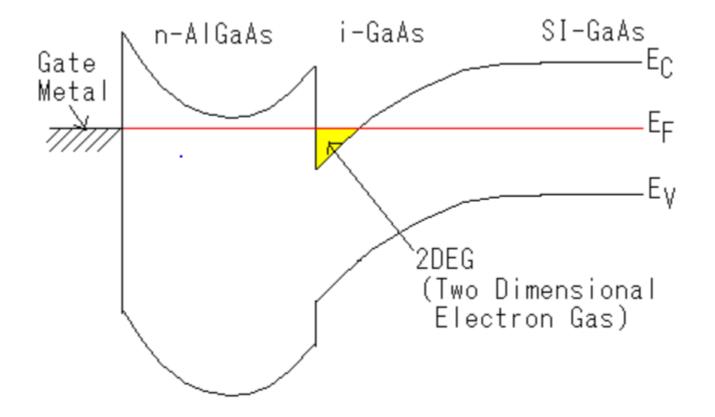
Future Directions

- Generalizations non-Abelian, higher-dimensions, interplay of symmetry.
- Could there be a physical mechanism, e.g., disorder, that initiates the flow of V?
- Many more edge transitions between not-fully-chiral edge states, e.g., 1/3 state.
- There exists an intriguing analogy between 4-manifold topology and the Abelian Hall states. Does this analogy run deeper?

Conclusions

- A bulk chiral quantum Hall phase generically has multiple edge phases.
- These phases can be distinguished experimentally using tunneling measurements.
- Every fermionic edge phase has a corresponding bosonic edge phase

Heterostructure Band Energy Diagram



More topologically trivial additions

Superfluid strip $K \to K \oplus \sigma_x$

Several
$$\nu = 1$$
 strips
 $K \to K \oplus \sigma_z \oplus \sigma_z \oplus \cdots \oplus \sigma_z$

Strip of anything non-chiral with trivial quasiparticles $K \to K \oplus L$, $|\det(L)| = 1$ $\operatorname{sig}(L) = (n, n)$

In principle, can count the lattices in a genus by the Smith-Siegel-Minkowski mass formula

Sum over lattices in a genus = sum over edge phases $\Lambda \in g$ |Au

 $\int_{g} \frac{1}{|\operatorname{Aut}(\Lambda)|} = m(K)$ Conway and Sloane 1988

of automorphisms of lattice counts symmetries of K matrix

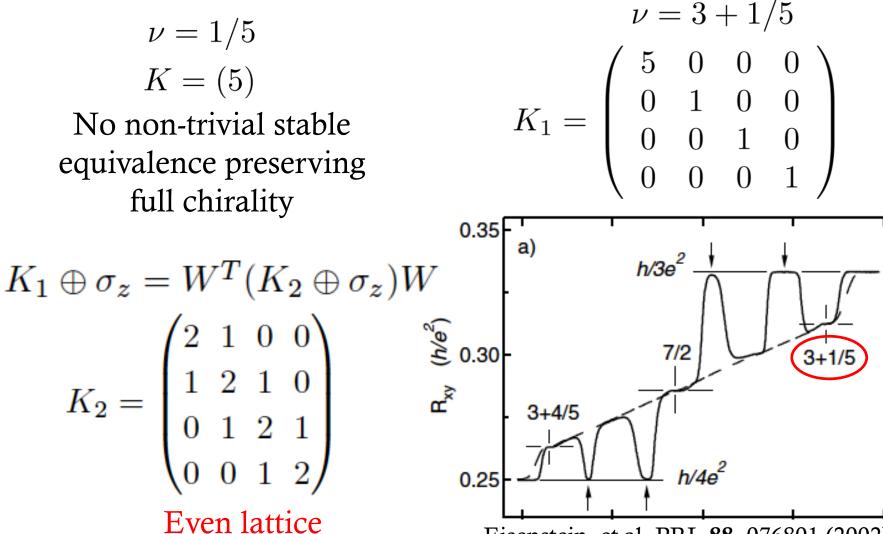
 Chiral Abelian quantum Hall states with more than 10 edge modes have multiple distinct chiral edge phases¹

• Otherwise there is a finite set of bulk states with only one edge phase; all others have multiple²

 \rightarrow Multiple edge phases are the norm, not the exception

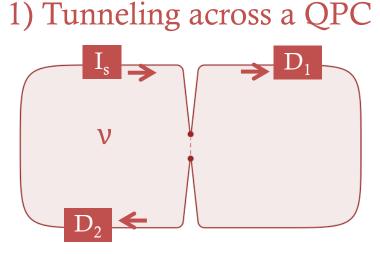
 ¹G. Watson, Proc. London Math Soc. 12 57787 (1962)
 ²D. Lorch and M. Kirschmer, LMS Journal of Computation and Mathematics 16, 172 (2013)

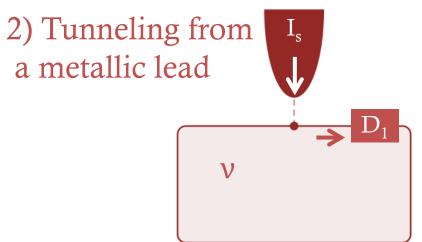
Example: even-odd equivalence by adding edge modes



Eisenstein, et al, PRL 88, 076801 (2002)

Candidate states at v=3+1/5 distinguishable by experiment Example, cont





 $I_b \propto V^{2\Delta_{min}-1}$

New edge does not have electron

 $K_1 \rightarrow I_b^{(1)} \propto V^{-3/5}$ $K_1 \rightarrow I_{lead}^{(1)} \propto V$ (tunnel electron) $K_2 \rightarrow I_b^{(2)} \propto V^{3/5}$ $K_2 \rightarrow I_{lead}^{(2)} \propto V^5$ (tunnel 2 electrons, spin polarized) Candidate states at v=3+1/5 have same quasiparticles mod *e*

$$K_{1} = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad K_{2} = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
$$t = (1, 1, 1, 1) \qquad t = (2, 2, 0, 0)$$

Compare quasiparticle charge:

 $e^*/e \in \{0, 1/5, 2/5, 3/5, 4/5\}$ $e^*/e \in \{0, 2/5, 4/5, 6/5, 8/5\}$ Defined mod e Defined mod 2e