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In this talk:

We have extended the powerful density matrix
renormalization group (DMRG) to solve continuum

electronic systems in 1d.

One key application is studying density functional
theory (DFT)—we can compute the exact functional.

Which limitations of DFT come from approximations?

Which are fundamental?



Outline:
* DMRG for continuum systems
 Exact density functional theory with DMRG
 Applications:
» Gaps in DFT

» Convergence of the Kohn-Sham equations



What is DMRG?

“It is at the moment the closest to an ultimate
weapon as one can dream of.” — T. Giamarchi

Controlled, essentially exact results

Linear scaling with system size (in 1d)

Full access to wavefunction

Dynamics, finite temperature

Parallelizable*

w & & & &

1d and narrow 2d systems

*Stoudenmire, White, PRB 87 155137, (2013)



How does DMRG work?
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Many-body wavefunction



How does DMRG work?

%

Freeze out all but a small
piece of wavefunction



How does DMRG work?
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Solve Schrodinger .
equation exactly for H|\If> \\If>

remaining piece



How does DMRG work?
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Shift exposed region, keeping only
the most important states in the basis



How does DMRG work?
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Shift exposed region, keeping only
the most important states in the basis



Example DMRG Calculation

Video available online: http://youtu.be/0zi4gUnSqe0

Sweep 1, Energy = 1.14814
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http://youtu.be/0zi4qUnSqe0

DMRG for continuum systems
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Grid basis

Need discrete degrees of freedom

Simplest approach is discretize real space:

e

1
~ o > (chejpn = 2n5 + el ¢))
j

Not atomic lattice sites, but “grid sites”




Converge results to a — 0 limit...

Grid error—1d hydrogen atom:
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Hamiltonian

Want to study ‘uncontrived’ 1d physics

A 1 02
— 9 Z wj;(x) 2 Vo ()




Hamiltonian

Want to study ‘uncontrived” 1d physics

A 1
H = 502 Z(Cijcgj_l_l — Qng]‘ + Cj,j+1caj)
0,J
1

"5 > ving (nj — 6ij)
2,J
+ Zvj %
J



Hamiltonian

What to choose for v(x), vee(x — 2")?

1d matter:

v(x) = Zva T — Xq)

a
Also we choose:

Ve (x — 2) = e~ 177

Z — Voo (T — x4)

“electrons”

“nuclet”



Why hasn’t DMRG been applied to these
systems before?

» Cost of long-range interactions

* Poor convergence—separation of energy scales



» Cost of long-range interactions

Normally DMRG scales o« N
with this approach o« N2 x N = N3

Disaster for the continuum! (N ~ 1000)



» Cost of long-range interactions

Fortunately solution recently proposed:

By writing Hamiltonian as a product of “transfer
matrices”* at each site, can represent arbitrary
strings of operators.

Choosing strings of operator \I produces

exponentially decaying interactions.

* a matrix product operator (MPO)
McCulloch, arxiv:0804.2509 (2008)



» Cost of long-range interactions

Bottom line:
Cost of exponential interactions can be
made same as next-neighbor

Can approximate power-laws as sum of
exponentials:

|
_|_

+ ...

Crosswhite, Doherty, Vidal, PRB 78 035116, (2008)



Why hasn’t DMRG been applied to these
systems before?

* Poor convergence—separation of energy scales



* Poor convergence—separation of energy scales

At least 3 widely varying energy scales in our
systems:

Grid kinetic energy (~1/a2) k

V
V
V

Density fluctuation (U) N

V
V

Spin fluctuation (t°/U) PaaULAN




* Poor convergence—separation of energy scales
Unusual situation for DMRG:

Typically concerned about cost of “keeping
enough states” for good accuracy.

Here number of states ~100 (small) but number
of sweeps needed can be ~1000 or more.




* Poor convergence—separation of energy scales

Solution: make better initial state.

From grid point of view, system very dilute:

For small region, only handful of orbitals
contribute to wavefunction.




* Poor convergence—separation of energy scales

Create coarse-graining mapping that projects all
but these orbitals

AP Py AP P P

Dolfi, Bauer, et al., PRL 109 020604 (2012)



Apply maps to Hamiltonian

Use DMRG at each scale and apply maps in
reverse



Apply maps to Hamiltonian
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Use DMRG at each scale and apply maps in
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Apply maps to Hamiltonian
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Use DMRG at each scale and apply maps in
reverse



Apply maps to Hamiltonian

Use DMRG at each scale and apply maps in
reverse



Demonstration:
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Demonstration:

0.5

0.4 —

0.3 -

0.2 —

0.1-

20

30

40

50

60



Demonstration:
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Demonstration:
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DMRG for continuum systems

Summary: powerful tool to solve broad class of
continuum 1d systems essentially exactly.

Today: DFT, but exciting possible applications
for 1d cold atom/molecule experiment.

+ Minimal approximation of Hamiltonian required
+ Exploit DMRG’s abilities to simulate:

» Real-time dynamics

» Finite T effects

Stoudenmire, Wagner, Burke, White, PRL 109, 056402 (2012)



Application #1:
Computing Gaps in DFT



Lightning DFT overview... “



Density functional theory (DFT)

Often where “rubber meets the road” in
condensed matter / materials physics / chemistry.

(e) DFT, with SOC (T1)
) D

Recent application:

Enhanced bulk

topological gap in
graphene coupled
to heavy adatoms

I’ M K ' 0 3 6

Weeks, Hu, Alicea, Franz, Wu, PRX 1, 021001 (201T1)



Density functional theory (DFT)

Outputs a band structure, but what does it mean
for an interacting system?

(e) DFT, with SOC (T1)
T T ]




Density functional theory (DFT)

DFT an exact reformulation of quantum
mechanics using density instead of wavefunction:

E[V] = (V|H|¥)

\ 4

E[n] = min (U|H|T)

v—n

“one of the greatest free lunches ever” — K. Burke



Density functional theory (DFT)

Rigorous foundation is the Hohenberg-Kohn
theorem:




Density functional theory (DFT)

Rigorous foundation is the Hohenberg-Kohn
theorem:




Density functional theory (DFT)

Rigorous foundation is the Hohenberg-Kohn
theorem:




Density functional theory (DFT)

n(z) — v(z) mapping holds for each type of

interaction, including none:

H="1T-+ ‘A/ee%—/v(x)ﬁ(az)

Ho=T +/a;vs(;)ﬁ($)

Non-interacting system called “Kohn-Sham system”.
Defined to have same density as interacting one.



Easy to find exact Kohn-Sham potential if you
have exact density already:
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Easy to find exact Kohn-Sham potential if you

have exact density already:

0.5
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Exact KS potential vs(x)w
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Here’s how:

1. Start with guessed Kohn-Sham
potential and solve non-interacting
problem.

2. Compare resulting density to exact
(interacting system) density.

3. Update potential: attempt to reduce
An(x) = Ngrial(x) — n(x)



KS Potential Demo Calculation:

nexact ntrial
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KS Potential Demo Calculation:

nexact - ntrial
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KS Potential Demo Calculation:

nexact

ntrial
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KS Potential Demo Calculation:

exact
x — T

n
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KS Potential Demo Calculation:
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KS Potential Demo Calculation:
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KS Potential Demo Calculation:
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In DFT literature, divide KS potential into
original v(x) plus correction

vs(x) = v(x) + Vuxe(T)

Accounts for missing interactions



Is DFT a mean-field theory?

No: exact theory gives exact energy and
ground-state density

Yes: using any other properties of KS system
s a type of approximation



One such approximation: band gap & real gap

KS band gap

Exact charge gap




Computing interacting charge gap

n(r) — 0.6—_ \1 rf _
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Charge Gap: Eg= Eni1- 2ENn+ Enc



Computing interacting charge gap
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Charge Gap: Eg= Eni1- 2ENn+ Enc



Computing interacting charge gap

n(r) — zz: x j :

wilk A
o= MMM A
n(z)— O'IJ N = 41 _

Charge Gap: Eg= Eni1- 2ENn+ Enc



Computing exact KS band gap

1. Compute exact density of
N-electron system.

2. Obtain (exact) Kohn-
Sham potential and
read off Kohn-Sham gap

/\/W\/V\/

NaVaYaYaYa'a

/\/WWV




Weakly correlated systems: H, chains

Chain of H, molecules,
model band insulator

> —
fixed H, equil parameter:
length 1.26 @ bond length “b”




H-> chains
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H-> chains (40 atoms)
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H-> chains (40 atoms)
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H-> chains

b =2.34

(40 atoms)
S
S RAN JUV VYV U VYV
N




Extrapolate all results to thermodynamic limit
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H-> chains
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H-> chains
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Expect KS system gapped WY
since even # electrons in W W

unit cell

0.4

Extra missing piece called
derivative discontinuity,*
absent from many
approximate functionals

©
W
|
[

Charge Gap
)
[\®)
|
T

Bond Length

*Perdew, Parr, Levy, Balduz, PRL 49, 1691 (1982)



Also check standard approx’s:
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Strong correlated systems: H chains

Chain of H atoms, model
Mott insulator

VYV YV

@ parameter: bond length “b”



H chains
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H chains (40 atoms)
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H chains
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H chains
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H chains

— Exact Gap
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Similarity to 1d Hubbard model:

— Exact Gap
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H chains

— Exact Gap
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H chains Mott insulators,
one electron per unit cell
— lowest band of Kohn-Sham system
half full
LSS

VYV YV VY

Not failure of DFT per se—taking KS band gap
an uncontrolled approximation



But comparing to LDA yields another twist...

(Unrestricted) LDA approx spontaneously
breaks spin symmetry:

0.5

0.4 — —

03- - b=4, 10
02- - atom system

0.1 |

0 — ' | ' | ' | ' |
-20 -10 0 10 20

well-known “spin contamination” effect



Unrestricted LDA gap “better” than exact KS gap
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Future work on gaps:

e Benchmark gaps with standard approx’s
(Hybrids, LDA+U)

e Benchmark newer approx’s (range-separated

hybrids)

e Obtain argument for generality of ULDA gap,
useful approach for more realistic systems?



Application #2:
Convergence of KS Equations



Recall last section:

Interactingsys. H = T + V. —I—/v(az‘) n(x)

Exact density

“Inversion”

Exact KS system H, = T vs(z)n(x)

«Q«é«

Gaps, etc.



But in real DFT applications:
Replace __..y Trial density: n;(x)

Kohn-Sham
Equations

New KS system: vgj)

UG



But in real DFT applications:
Replace __..y Trial density: n;(x)

Kohn-Sham
Equations

New KS system: vgj)

UG



Trial density: n;(x)

\ 4

New KS system: Uéj)

Recall: vs(x) = v(x) + Vuxe ()

Definition of Uy ()



Obtain KS potential supporting 72, ()

(saw this before)

0.4 —

0.3

n;(z) 02

0
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Obtain interacting-system potential

supporting

with
Interactions
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Cxclna](@) = vsln;l(z) = vln; (=)

new “mean-tfield” correction to potential

New Kohn-Sham system:

A

Hy= T + LUHXC[nj](x)ﬁ<x) —I—/v(x)ﬁ(z)

X

Solve to get new trial density...



Exact functional

Only new ingredient is “interacting inversion”,
requires solving many interacting systems.

Being able to compute both:

ve|n|(x) /W\/\/V\/

v(n](z) VAAAAAA

Means having the “exact functional”



Exact functional

Often discussed as a xﬂ?l“ﬂﬁﬁaﬁ?ﬁ?g

closed-form analytic R LA e

expression: ey VelY
Uno@RSveEn=z)

Our perspective: exact functional is an algorithm



Exact functional

What's the application?

Learn how DFT behaves with exact functional.
Any failures are fundamental.
Otherwise they are failures of approximations.



Convergence

Do the KS equations always converge using the
exact functional?

Test calculations using DMRG on small chains:

0
-12 12




Convergence

One step of the KS equations

Already looks to overshoot...
Is damping enough to fix?

na(2) = Anjpi(z) + (1 = A)n;(z)



Convergence

Test 1: weakly correlated
H> molecule

Damping helps, but not
required: I —

SO =
W -

S>>

1teration



Convergence

Test 2: strongly correlated
H> molecule

0.2
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Convergence

Is damping always enough?

Yes! Can prove via linear response that energy
always goes down for small enough damping.

Wagner, Stoudenmire, Burke, White, PRL 111, 093003 (2013)

gs

v

o

()
I

—— energy of interpolated density
— — linear response

Ey[n |-E

—

—
—_—
—
—

Combined with convexity of exact functional,
guarantees convergence.



Future Directions



Gaps are an example where exact Kohn-Sham
system fails to reproduce exact properties.

What about transport?
Common approx:  G(k,w) — G**(k,w)

Yields exact transport
properties of single-
impurity Anderson
model!

Continuum models?

Bergfield, Liu, Burke, Phys. Rev. Lett 108, 066801 (2012)



Combine METTS* algorithm with continuum.
Test thermal DFT approximations, cold atoms
systems at finite T.

- DMRG/QMC hybrid
- Quantum Monte Carlo with no sign problem
- (Does have the “DMRG problem”)

1) =[DIDIDHIT) collapse
6664 \

measure
thermalize 6{5—(5{5 q (91 ‘A‘(bﬁ

1) oc e P12 1)

*White, PRL 102, 190601 (2009)
Stoudenmire, White, NJP 12, 055026 (201C



Combine METTS* algorithm with continuum.
Test thermal DFT approximations, cold atoms
systems at finite T.

- DMRG/QMC hybrid
- Quantum Monte Carlo with no sign problem
- (Does have the “DMRG problem”)

2) =[DIDIDIL) collapse
6664 \

measure
thermalize 6{5—(5{5 q (91 ‘A‘(bﬁ

1) oc e P12 1)

*White, PRL 102, 190601 (2009)
Stoudenmire, White, NJP 12, 055026 (201C



Compute lattice models using exact natural
orbitals, DFT (Kohn-Sham) orbitals.
Compare to continuum. (Good student project.)
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Compute lattice models using exact natural
orbitals, DFT (Kohn-Sham) orbitals.
Compare to continuum. (Good student project.)
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Compute lattice models using exact natural
orbitals, DFT (Kohn-Sham) orbitals.
Compare to continuum. (Good student project.)
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Compute lattice models using exact natural
orbitals, DFT (Kohn-Sham) orbitals.
Compare to continuum. (Good student project.)
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Compute lattice models using exact natural
orbitals, DFT (Kohn-Sham) orbitals.
Compare to continuum. (Good student project.)
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Compute lattice models using exact natural
orbitals, DFT (Kohn-Sham) orbitals.
Compare to continuum. (Good student project.)
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Compute lattice models using exact natural
orbitals, DFT (Kohn-Sham) orbitals.
Compare to continuum. (Good student project.)
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Compute lattice models using exact natural
orbitals, DFT (Kohn-Sham) orbitals.
Compare to continuum. (Good student project.)
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Compute lattice models using exact natural
orbitals, DFT (Kohn-Sham) orbitals.
Compare to continuum. (Good student project.)
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Summary

* Can extend DMRG to solve continuum 1d systems.

» Computing exact quantities appearing in density
functional gives insight into gaps, KS equations

* Much more to explore including:
» Quasi-1d cold atom/molecule systems
» Transport approx’s in DFT

» Continuum to lattice mapping



