Theory of Resonant X-Ray Scattering with

Applications to high-Tc Cuprates

David Benjamin (Harvard), Eugene Demler (Harvard), Peter
Abbamonte (lllinois), Israel Klich (UVA), Dmitry Abanin
(Perimeter)

November 7, 2013



Introduction

REXS data

Model

Results

Formalism

RIXS results and data



Resonant x-ray scattering

@ Photon knocks core electron to

valence  $ valence band at R,,.
band

core level




Resonant x-ray scattering

@ Photon knocks core electron to

wionce & T — valence band at R,;,.
band ' State @ Things happen (optional)

core level




Resonant x-ray scattering

@ Photon knocks core electron to

o * Intermediate » ko valence band at Ry
band State @ Things happen (optional)

@ Electron fills core hole at R,,,.

core level




Resonant x-ray scattering

@ Photon knocks core electron to

o * Intermediate » ko valence band at Ry
band State @ Things happen (optional)

@ Electron fills core hole at R,,,.

Intensity o
D NAissPo(Er — B — Aw)
f

core level




Resonant x-ray scattering

@ Photon knocks core electron to

. e — ) valence band at R,,,.
band . State ' @ Things happen (optional)

@ Electron fills core hole at R,,,.

Intensity o

D NAissPo(Er — Ei — Aw)
f

core level

Ay = Ze (ep=ki) B #1d, (w + Hyy — E; +40) "4 Ji),
reso‘n;nce

where incident photon is k;,w, 1/T" is core hole lifetime and
H,, = Hp+ core hole potential at R,,, and outgoing photon is
ki,w—Aw.
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Photon knocks core electron to valence band.
CDW elastically scatters electron, imparts momentum Qcpw-.

Electron re-fills core hole, emitting photon.

Enormously sensitive to valence electrons only.



REXS:

valence k 4

band

(k
Aiy Ee =

-

CDW scatters
electron

core level

KR (] dy (

“valence-selective diffraction”

=

@k Qepw

w+ Hy, — E; +i0) 7V d J4)

resonance

Photon knocks core electron to valence band.
CDW elastically scatters electron, imparts momentum Qcpw.

Electron re-fills core hole, emitting photon.

Enormously sensitive to valence electrons only.



REXS: “valence-selective diffraction”

L * CDW scatters » Pk Qeow
band electron

core level

A Ze (s =k} Rom (|, (w + Hyp — By +i0) " df |d)

resonance

@ What does w-dependence mean?

@ What microscopic model describes cuprate REXS?
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Two-peak spectrum in cuprate REXS
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Figure: REXS of LBCO (x=1/8) at Aq = Qcpw = (27/4,0,0).
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Figure: REXS of LBCO (x=1/8) at Aq = Qcpw = (27/4,0,0).

@ What does w-dependence mean? Why two peaks?

@ What microscopic model describes cuprate REXS? Are
quasiparticles enough?




Mott interpretation of two peaks in cuprate REXS
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Problems with Mott interpretation

@ Peak separation of 1.5 eV is too small for Hubbard gap.

@ If second peak is Mott, it should be strong at Cu edge and
weak at O edge.




A simple model agrees with experimental data

Results of a simple quasiparticle model:
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Band structure explains the two peaks

e Elastic scattering |k) = |k + Qcpw) needs &k = &k q-
@ Nesting of surface £, = E vyields peak at w = F.
e Contours tangent to degenerate lines k, = £(m — Q/2),

k, = +£Q/2 are nested.

i i 1.49




Long-lived quasiparticles

@ Peaks are broadened by fi +
core .hole.and 3 I\ Oxygen
quasiparticle decay. B |'I "'.‘ Resonance
e 1/width gives lower = L '
bound for quasiparticle g | $
lifetime. £ [ +
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REXS Formalism
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REXS Formalism
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N: single-particle Fermi sea occupation

Uy, single-particle time-evolution with core hole at R,

det: device for matrix elements of Slater determinant state
det()?: one Fermi sea for each spin

(1= N)+ Up(t)N: time-evolve only occupied states.

|m) Wannier orbital at R,,,.

(m| |m): Propagator (m|U,,(t)|m) for N = 0, Pauli-blocking
0 for N = 1.
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REXS Formalism
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Motivating the determinant formula

Consider (™) = tr [exe*BH} /tr [efﬁH} for quadratic X, H.

@ In basis where X = E WaNg

tr [e¥] :H Z el :H(1+e“’“):det (14¢€%)

a nq=0,1 o
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Summary of REXS

@ What does w-dependence mean? Why two peaks?

@ What microscopic model describes cuprate REXS? Are
quasiparticles enough?

V.
Answers

@ Band structure explains everything, core hole improve
quantitative agreement, and high-energy quasiparticles are
surprisingly well-defined!

@ DMFT long-lived quasiparticles: PRL 110, 086401
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@ Due to spin-orbit of core level, spin-flip is possible

@ Polarized incoming beam can select either spin-flip or

non-spin-flip.
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® Y,p3: polarization-dependent balance between spin-flip and
non-flip
@ Forward and backward time “Keldysh” histories
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RIXS Formalism
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Surprise: band structure yields dispersing peaks!
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Surprise: band structure yields dispersing peaks!

Same energy, widths, long high-energy tail, and doping-insensitivty.
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Figure: Bi-2212 data from Mark Dean
et al, PRL 110,147001 (2013)




Surprise: core hole separates spin-flip from non-flip!

Can quasiparticles do this?
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Figure: Bi-2212 spin-flip and

non-flip channels from Mark Dean et
al, PRL 110,147001 (2013)



Surprise: core hole separates spin-flip from non-flip!

Can quasiparticles do this? Yes.
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eV.
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@ Quasiparticles, core hole mimic magnon’s lineshape!

@ Relevant to “pairing glue.”

@ Spin flip insensitive to core hole. . . diagrammatics?

Band structure

Long-lived quasiparticles
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Energy Domain to Time Domain
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Summary of REXS Experiments

e Abbamonte, Science (2002). REXS at O K resonance.
Observed thin-film interference.

e Wilkins, PRL (2003). Magnetic REXS in manganites.

e Wilkins, PRL (2003) and Dhesi, PRL (2004). Orbital order in
manganites.

@ Abbamonte, Nature (2004). Hole crystal in Sr14Cu240y4;.

@ Abbamonte, Nature Physics (2005). First direct evidence of
cuprate CDW. Proposed spatially-modulated Mottness to
explain second peak. Related: Fink, PRB (2009) with LESCO.

@ Schussler-Langeheine, PRL (2005); Nazarenko, PRL (2006);
Herrero-Martin, PRB (2006); CDW in other correlated
systems.

@ Ghiringhelli, Science (2012). Incommensurate CDW in YBCO.



Why one can ignore interactions

Diagram in Words Contribution to REXS
X
elastic scattering contributes
S
inelastic scattering does not contribute
<

self-energy renormalizes quasiparticles



Relation to Green's function

(ildjln) (n|d}]i)

I w, Q) eT1QT; = 7
rEXS (W, Q) %: B BN 4l (7)
while STM measures local density of states ImG(w, r;),
my [ Gild; ) nld] i) (ilnnldit) 1 o
—ENt b4+ 0t —E+ EN T 4w+ 0t

Differences: decay of intermediate state in REXS, intermediate
state energy depends on core hole interaction, REXS does not have
electron-removal term.
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