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Flavor Symmetry 
Motivations

!3

❖ Reduction of SM Parameters 

❖ Explain Neutrino behavior: Mixing, 
Mass Scale, Helicity, etc. 

❖ Connecting Lepton & Quark Properties 

❖ Other Particle Physics questions:        
Dark Matter, New Symmetries 

❖ Clues to New Physics at the            
Energy Frontier



!4

“I	 have	 done	 a	 terrible	 thing	 today,	 something	 which	 no	 
theoretical	 physicist	 should	 ever	 do.	 I	 have	 suggested	 
something	 that	 can	 never	 be	 verified	 experimentally.”	 

-Wolfgang	 Pauli	 (1930)
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15 years of New Physics
from Neutrino Anomalies
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Anomalies New Physics Been and Gone

Neutrino Oscillation/Mass

LSND Anomaly
MINOS Neutrino Anti-
Neutrino Asymmetry

FTL Neutrinos

Non-zero Reactor Angle

MiniBooNE low-E νe excess

Missing Reactor/Gallium ν

IceCube High Energy Events
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Neutrino Mixing
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❖ Neutrino Oscillation 

❖ PMNS Matrix and 
Parametrization 

❖ For simplicity we 
set dCP to 0 

❖ TBM Symmetry: 
Tribimaximal 
Mixing

0
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Mass & Hierarchy
❖ Limited Data leads to complex 

picture 

❖ Best measurements are ∆2  

between mass eigenstates         
(sign of atmospheric mass- 
splitting remains unknown) 

❖ 2 possible orderings:                
Normal and Inverted 

❖ Quasi-degenerate case                    
(now disfavored) 

❖ Difficult to test, but hopefully  
next-gen (long baseline) detectors 
will settle the issue !7



Helicity and Seesaws
❖ Nonzero Mass: means Sterile RH 

Neutrinos are needed 

❖ Dirac—Higgs coupling (x10-12) 

❖ Majorana—Possible Seesaw Mechanism 

❖ Loss of Lepton Number Conservation 

❖ Light LH neutrinos explained by 
making RH neutrinos very heavy 

❖ Equation combines two mass matrices 

❖ Tough to test directly as “heavy” 
neutrinos could be at GUT scale !8
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T´ x  Z
❖ Z2: Cyclic Group 

❖ T´: Binary Tetrahedral Symmetry 

❖ Double-Cover of Tetrahedral Group, A4, 
both of which can produce TBM values 

❖ Order 24 Non-Abelian                        
(non-commuting) Finite Group 

❖ Benefits of T´ over A4:                  
Compatibility with Quark Sector 

❖ First modern use in 1994 as a family 
symmetry for Quarks !10



Group Irrep.
Multiplication Tables

A4

T´

• Identical singlet and 
triplet structure allow 
significant similarities 

• T´ is notable for also 
including doublets

!11



Particle Assignments

❖ LH leptons in 
Triplet RH leptons 
in Singlet 

❖ Uses 2+1 for quarks 
allowing for top 
quark singlet

!12
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Higgs VEVs
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Cabibbo Angle Prediction
❖ Minimal Renormalizable T´ Model      

(No Higgs T´ doublets) 

❖ Shared Higgs allow connection between 
neutrino mixing and Cabibbo Matrix 
(not full CKM) 

❖ Method for Quark Mixing Prediction: 

❖ Assume up-type quarks and charged 
leptons are mass eigenstates 

❖ Complex Clebsch-Gordan 
coefficients from symmetry 

❖ Diagonalize nontrivial 2x2 quark 
matrices !15

tan 2⇥12 =
p
2
3

⇥
12,predicted = 12.6�
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= 13.0�



Perturbations
❖ Historical Development 

vs. Optimal Input 

❖ What neutrino mixing 
does Cabibbo Angle 
demand? 

❖ Perturbations in Higgs 
VEVs and Mixing 
Angles

!16
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Predictions

❖ Yields correlation between Atmospheric 
and Reactor Mixing Angles 

❖ While noting the trivial case restores TBM 
values, use of Cabibbo Angle input forces 
symmetry breaking

!17
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Daya Bay Early Results
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Fogli Global Results
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T´ is blind to 
Octant Degeneracy

❖ Different Global 
Analysis by Forero et al. 

❖ Due to redefinition of 
angles, model prediction 
is only for correlation 
magnitude 

❖ Though this analysis 
indicates lower angle 
precision, best fit value 
agrees within 2.5% 

!19
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Choices, Choices
❖ Need a Higgs doublet to add 

third family quark mixing 

❖ Several options for the NMRT´M 

❖ Many new variables limit new 
predictions 

❖ Added complexity aside, this 
remains an intriguing avenue of 
investigation
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CKM Fits I
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CKM Fits II
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Quartification
❖ Toy Quiver Model 

❖ Combines T´ and SM 
groups 

❖ A non-specific test of 
compatibility 

❖ Demands an  
additional sub-quiver 
representation

!24
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DM & Leptogenesis
❖ Meanwhile in Valencia... 

❖ New Symmetry, New RH Neutrinos, 
New Higgs, New Model 

❖ Dark Matter generated from the 
neutral real scalar parts of Higgs 
triplet 

❖ New Lagrangian Terms 

❖ If Y4 and Y5 are complex, they can 
yield Leptogenesis 

❖ Relic Density leads to approximate 
WIMP mass of ≈1.62 TeV !26
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Limitations and 
Unanswered Questions

❖ Hopes for Future Work: 

❖ Higher-Order Calc. w/o Fine-Tuning 

❖ Combining with SUSY or other GUTs 

❖ Leptogenesis: 

❖ CP-Violating Phase - Practical Limitation 

❖ Evaluating potential in T´ WIMP Model 

❖ Structural Limitations: 

❖ Solar Mass Split - Symmetry Limitation 

❖ NMRT´M with all CKM Angles
!29



Conclusions
❖ We unify TBM breaking with precise CKM angles 

❖ Successful Predictions: 

❖ TBM Symmetry is broken 

❖ Global fits indicate ỷ lies within 5% of our expectation 

❖ Intriguing Dark Matter Candidate with interesting behavior 

❖ We need more data to understand neutrinos (don’t we always?) 

❖ Between new detectors , new results, and new theories this remains 
an exciting time in neutrino physics

!30



Thank	 you	 for	 coming!
Questions?


