Neutrino Advances and
Developments 1 in
Finite Groupa Mocels

Outline

Motivation and Neutrino Review

Building the Minimal Renormalizable T^{\prime} Model
Connections to SM and other BSM physics
Dark Matter from T' Symmetry
Limitations and Future Outlook

Flavor symmetry Motivations

* Reduction of SM Parameters
* Explain Neutrino behavior: Mixing, Mass Scale, Helicity, etc.
* Connecting Lepton \&e Quark Properties
* Other Particle Physics questions: Dark Matter, New Symmetries
* Clues to New Physics at the Energy Frontier
"I have done a terrible thing today, something which no theoretical physicist should ever do. I have suggested something that can never be verified experimentally.
-Wolfgang Pauli (1930)
"I have done a terrible thing today, something which no theoretical physicist should ever do. I have suggested something that can never be verified experimentally.
-Wolfgang Pauli (1930)

15 years of New Physics from Neutrino Anomalies

Anomalies	New Physics	Been and Gone
Neutrino Oscillation/Mass		
LSND Anomaly		
MINOS Neutrino Anti-		
Neutrino Asymmetry		
FTL Neutrinos		
Non-zero Reactor Angle		
MiniBooNE low-E Ve excess		
Missing Reactor/Gallium V		
IceCube High Energy Events		

15 years of New Physics from Neutrino Anomalies

Anomalies	New Physics	Been and Gone
Neutrino Oscillation/Mass		
LSND Anomaly		
MINOS Neutrino Anti-		
Neutrino Asymmetry		
FTL Neutrinos		
Non-zero Reactor Angle		
MiniBooNE low-E Ve excess		
Missing Reactor/Gallium V		
IceCube High Energy Events		

15 years of New Physics from Neutrino Anomalies

Anomalies	New Physics	Been and Gone
Neutrino Oscillation/Mass		
LSND Anomaly		
MINOS Neutrino Anti-		
Neutrino Asymmetry		
FTL Neutrinos		
Non-zero Reactor Angle		
MiniBooNE low-E Ve excess		
Missing Reactor/Gallium V		
IceCube High Energy Events		

15 years of New Physics from Neutrino Anomalies

Anomalies	New Physics	Been and Gone
Neutrino Oscillation/Mass		
LSND Anomaly		
MINOS Neutrino Anti-		
Neutrino Asymmetry		
FTL Neutrinos		
Non-zero Reactor Angle		
MiniBooNE low-E Ve excess		
Missing Reactor/Gallium V		
IceCube High Energy Events		

15 years of New Physics from Neutrino Anomalies

Anomalies	New Physics	Been and Gone
Neutrino Oscillation/Mass		
LSND Anomaly		
MINOS Neutrino Anti-		
Neutrino Asymmetry		
FTL Neutrinos		
Non-zero Reactor Angle		
MiniBooNE low-E Ve excess		
Missing Reactor/Gallium V		
IceCube High Energy Events		

15 years of New Physics from Neutrino Anomalies

Anomalies	New Physics	Been and Gone
Neutrino Oscillation/Mass		
LSND Anomaly		
MINOS Neutrino Anti-		
Neutrino Asymmetry		
FTL Neutrinos		
Non-zero Reactor Angle		
MiniBooNE low-E Ve excess		
Missing Reactor/Gallium V		
IceCube High Energy Events		

15 years of New Physics from Neutrino Anomalies

Anomalies	New Physics	Been and Gone
Neutrino Oscillation/Mass		
LSND Anomaly		
MINOS Neutrino Anti-		
Neutrino Asymmetry		
FrL Neutrinos		
Non-zero Reactor Angle		????
MiniBooNE low-E Ve excess		$? ? ? ?$
Missing Reactor/Gallium V		
IceCube High Energy Events		

15 years of New Physics from Neutrino Anomalies

Anomalies	New Physics	Been and Gone
Neutrino Oscillation/Mass		
LSND Anomaly		
MINOS Neutrino Anti-		
Neutrino Asymmetry		
FrL Neutrinos		
Non-zero Reactor Angle		$? ? ? ?$
MiniBooNE low-E Ve excess		$? ? ? ?$
Missing Reactor/Gallium V	????	
IceCube High Energy Events		

$\begin{array}{ll}\text { * } & \text { Neutrino Oscillation } \\ \text { \& } & \text { PMNS Matrix and } \\ & \text { Parametrization }\end{array}\left(\begin{array}{l}\nu_{1} \\ \nu_{2} \\ \nu_{3}\end{array}\right)=U_{\mathrm{PMNS}}\left(\begin{array}{l}\nu_{e} \\ \nu_{\mu} \\ \nu_{\tau}\end{array}\right)$

* For simplicity we set δ_{GP} to 0
* TBM Symmetry: Tribimaximal
Mixing

\& Neutrino Oscillation
PMNS Matrix and Parametrization
 set δ_{GP} to 0 with $c_{12} \equiv \cos \theta_{12}, s_{13} \equiv \sin \theta_{13}$, etc.
* TBM Symmetry: Tribimaximal
Mixing

Neutrino Mixing

\& $\begin{array}{ll}\text { Neutrino Oscillation } \\ \text { \& } & \text { PMNS Matrix and }\end{array}\left(\begin{array}{l}\nu_{1} \\ \nu_{2} \\ \nu_{3}\end{array}\right)=U_{\mathrm{PMNS}}\left(\begin{array}{c}\nu_{e} \\ \nu_{\mu} \\ \nu_{\tau}\end{array}\right)$ Parametrization set δ_{CP} to 0

$$
\text { with } c_{12} \equiv \cos \theta_{12}, s_{13} \equiv \sin \theta_{13}, \text { etc. }
$$

* TBM Symmetry:

$$
\theta_{12} \simeq 35.3^{\circ}, \theta_{13}=0^{\circ}, \theta_{23}=45^{\circ}
$$ Tribimaximal Mixing

$$
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}
\end{array}\right)
$$

Mass \& Hierarchy

* Limited Data leads to complex picture
- Best measurements are Δ^{2} between mass eigenstates (sign of atmospheric masssplitting remains unknown)
* 2 possible orderings: Normal and Inverted
* Quasi-degenerate case (now disfavored)
* Difficult to test, but hopefully next-gen (long baseline) detectors will settle the issue

Helicity and Seesaws

* Nonzero Mass: means Sterile RH Neutrinos are needed
- Dirac-Higgs coupling $\left(\times 10^{-12}\right)$
- Majorana-Possible Seesaw Mechanism
* Loss of Lepton Number Conservation
* Light LH neutrinos explained by making RH neutrinos very heavy
* Equation combines two mass matrices
* Tough to test directly as "heavy" neutrinos could be at GUT scale

Helicity and Seesaws

* Nonzero Mass: means Sterile RH Neutrinos are needed
- Dirac-Higgs coupling $\left(\times 10^{-12}\right)$
* Majorana-Possible Seesaw Mechanism
* Loss of Lepton Number Conservation
* Light LH neutrinos explained by making RH neutrinos very heavy
\& Equation combines two mass matrices
* Tough to test directly as "heavy"

$$
M_{\nu}=M_{D} M_{N}^{-1} M_{D}^{T}
$$

Helicity and Seesaws

* Nonzero Mass: means Sterile RH Neutrinos are needed
- Dirac-Higgs coupling $\left(\times 10^{-12}\right)$
* Majorana-Possible Seesaw Mechanism
* Loss of Lepton Number Conservation
* Light LH neutrinos explained by making RH neutrinos very heavy
\& Equation combines two mass matrices
* Tough to test directly as "heavy"

$$
M_{\nu}=M_{D} M_{N}^{-1} M_{D}^{T}
$$

Outline

Motivation and Neutrino Review
Building the Minimal Renormalizable T^{\prime} ModelConnections to SM and other BSM physics
Dark Matter from T' SymmetryLimitations and Future Outlook

- $\quad Z_{2}$: Cyclic Group
* T^{\prime} : Binary Tetrahedral Symmetry
* Double-Cover of Tetrahedral Group, A_{4}, both of which can produce TBM values
- Order 24 Non-Abelian (non-commuting) Finite Group
* Benefits of T^{\prime} over A_{4} : Compatibility with Quark Sector
* First modern use in 1994 as a family symmetry for Quarks

Group Irrep. Multiplication Tables

- Identical singlet and triplet structure allow significant similarities
- T^{\prime} is notable for also including doublets

	1_{1}	1_{2}	1_{3}	3
1_{1}	1_{1}	1_{2}	1_{3}	3
1_{2}	1_{2}	1_{3}	1_{1}	3
1_{3}	1_{3}	1_{1}	1_{2}	3
3	3	3	3	$1_{1}+1_{2}+1_{3}+3+3$

T^{\prime}

	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{1}	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{2}	1_{2}	1_{3}	1_{1}	2_{2}	2_{3}	2_{1}	3
1_{3}	1_{3}	1_{1}	1_{2}	2_{3}	2_{1}	2_{2}	3
2_{1}	2_{1}	2_{2}	2_{3}	$1_{1}+3$	$1_{2}+3$	$1_{3}+3$	$2_{1}+2_{2}+2_{3}$
2_{2}	2_{2}	2_{3}	2_{1}	$1_{2}+3$	$1_{3}+3$	$1_{1}+3$	$2_{1}+2_{2}+2_{3}$
2_{3}	2_{3}	2_{1}	2_{2}	$1_{3}+3$	$1_{1}+3$	$1_{2}+3$	$2_{1}+2_{2}+2_{3}$
3	3	3	3	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$1_{1}+1_{2}+1_{3}+3+3$

Particle Assignments

LH leptons in Triplet RH leptons in Singlet

$$
\left.\begin{array}{l}
\binom{\nu_{\tau}}{\tau^{-}}_{L} \\
\nu_{\mu} \\
\mu^{-} \\
\nu_{e} \\
e^{-}
\end{array}\right)_{L}, ~ L_{L}(3,+1)
$$

$$
\begin{aligned}
& \tau_{R}^{-}\left(1_{1},-1\right) \text { and } N_{R}^{(1)}\left(1_{1},+1\right) \\
& \mu_{R}^{-}\left(1_{2},-1\right) \text { and } N_{R}^{(2)}\left(1_{2},+1\right) \\
& e_{R}^{-}\left(1_{3},-1\right) \text { and } N_{R}^{(3)}\left(1_{3},+1\right)
\end{aligned}
$$

Uses $2+1$ for quarks

$$
\left.\begin{array}{l}
\left(\begin{array}{c}
t \\
b \\
c \\
s \\
s \\
u \\
d
\end{array}\right)_{\mathrm{L}} \mathcal{Q}_{\mathrm{L}} \quad\left(1_{1},+1\right) \\
\mathrm{L}_{\mathrm{L}}
\end{array}\right\} \quad\left(2_{1},+1\right),
$$

$$
\begin{array}{ll}
\left.\begin{array}{l}
t_{\mathrm{R}} \\
b_{\mathrm{R}} \\
c_{\mathrm{R}} \\
u_{\mathrm{R}} \\
s_{\mathrm{R}} \\
d_{\mathrm{R}}
\end{array}\right\} \begin{array}{rr}
& \left(1_{1},+1\right) \\
\mathcal{C}_{\mathrm{R}} & \left(2_{3},-1\right) \\
\mathcal{S}_{\mathrm{R}} & \left(2_{2},+1\right)
\end{array} \\
\hline
\end{array}
$$

Formingீ Lagrangian Terms

Leptons	L_{L}	τ_{R}	μ_{R}	e_{R}	$N_{\mathrm{R}}^{(1)}$	$N_{\mathrm{R}}^{(2)}$	$N_{\mathrm{R}}^{(3)}$
\mathbf{T}^{\prime}	3	1_{1}	1_{2}	1_{3}	1_{1}	1_{2}	1_{3}
$\mathbf{Z}_{\mathbf{2}}$	+	-	-	-	+	+	+

	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{1}	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{2}	1_{2}	1_{3}	1_{1}	2_{2}	2_{3}	2_{1}	3
1_{3}	1_{3}	1_{1}	1_{2}	2_{3}	2_{1}	2_{2}	3
2_{1}	2_{1}	2_{2}	2_{3}	$1_{1}+3$	$1_{2}+3$	$1_{3}+3$	$2_{1}+2_{2}+2_{3}$
2_{2}	2_{2}	2_{3}	2_{1}	$1_{2}+3$	$1_{3}+3$	$1_{1}+3$	$2_{1}+2_{2}+2_{3}$
2_{3}	2_{3}	2_{1}	2_{2}	$1_{3}+3$	$1_{1}+3$	$1_{2}+3$	$2_{1}+2_{2}+2_{3}$
3	3	3	3	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$1_{1}+1_{2}+1_{3}+3+3$

Forming Lagrangian Terms

Leptons	L_{L}	τ_{R}	μ_{R}	e_{R}	$N_{\mathrm{R}}^{(1)}$	$N_{\mathrm{R}}^{(2)}$	$N_{\mathrm{R}}^{(3)}$
\mathbf{T}^{\prime}	3	1_{1}	1_{2}	1_{3}	1_{1}	1_{2}	1_{3}
$\mathbf{Z}_{\mathbf{2}}$	+	-	-	-	+	+	+

$$
L_{L} e_{R} H
$$

	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{1}	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{2}	1_{2}	1_{3}	1_{1}	2_{2}	2_{3}	2_{1}	3
1_{3}	1_{3}	1_{1}	1_{2}	2_{3}	2_{1}	2_{2}	3
2_{1}	2_{1}	2_{2}	2_{3}	$1_{1}+3$	$1_{2}+3$	$1_{3}+3$	$2_{1}+2_{2}+2_{3}$
2_{2}	2_{2}	2_{3}	2_{1}	$1_{2}+3$	$1_{3}+3$	$1_{1}+3$	$2_{1}+2_{2}+2_{3}$
2_{3}	2_{3}	2_{1}	2_{2}	$1_{3}+3$	$1_{1}+3$	$1_{2}+3$	$2_{1}+2_{2}+2_{3}$
3	3	3	3	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$1_{1}+1_{2}+1_{3}+3+3$

Forming Lagrangian Terms

Leptons	L_{L}	τ_{R}	μ_{R}	e_{R}	$N_{\mathrm{R}}^{(1)}$	$N_{\mathrm{R}}^{(2)}$	$N_{\mathrm{R}}^{(3)}$
\mathbf{T}^{\prime}	3	1_{1}	1_{2}	1_{3}	1_{1}	1_{2}	1_{3}
$\mathbf{Z}_{\mathbf{2}}$	+	-	-	-	+	+	+

$$
L_{L} e_{R} H_{3}^{\prime}
$$

$$
H_{3}^{\prime} \quad(3,-1)
$$

	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{1}	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{2}	1_{2}	1_{3}	1_{1}	2_{2}	2_{3}	2_{1}	3
1_{3}	1_{3}	1_{1}	1_{2}	2_{3}	2_{1}	2_{2}	3
2_{1}	2_{1}	2_{2}	2_{3}	$1_{1}+3$	$1_{2}+3$	$1_{3}+3$	$2_{1}+2_{2}+2_{3}$
2_{2}	2_{2}	2_{3}	2_{1}	$1_{2}+3$	$1_{3}+3$	$1_{1}+3$	$2_{1}+2_{2}+2_{3}$
2_{3}	2_{3}	2_{1}	2_{2}	$1_{3}+3$	$1_{1}+3$	$1_{2}+3$	$2_{1}+2_{2}+2_{3}$
3	3	3	3	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$1_{1}+1_{2}+1_{3}+3+3$

Forming Lagrangian Terms

Forming Lagrangian Terms

Leptons	L_{L}	τ_{R}	μ_{R}	e_{R}	$N_{\mathrm{R}}^{(1)}$	$N_{\mathrm{R}}^{(2)}$	$N_{\mathrm{R}}^{(3)}$
\mathbf{T}^{\prime}	3	1_{1}	1_{2}	1_{3}	1_{1}	1_{2}	1_{3}
$\mathbf{Z}_{\mathbf{2}}$	+	-	-	-	+	+	+

$Q_{L} t_{R} H_{1_{1}}$

Forming Lagrangian Terms

Leptons	L_{L}	τ_{R}	μ_{R}	e_{R}	$N_{\mathrm{R}}^{(1)}$	$N_{\mathrm{R}}^{(2)}$	$N_{\mathrm{R}}^{(3)}$
\mathbf{T}^{\prime}	3	1_{1}	1_{2}	1_{3}	1_{1}	1_{2}	1_{3}
$\mathbf{Z}_{\mathbf{2}}$	+	-	-	-	+	+	+

Forming Lagrangian Terms

Leptons	L_{L}	τ_{R}	μ_{R}	e_{R}	$N_{\mathrm{R}}^{(1)}$	$N_{\mathrm{R}}^{(2)}$	$N_{\mathrm{R}}^{(3)}$
\mathbf{T}^{\prime}	3	1_{1}	1_{2}	1_{3}	1_{1}	1_{2}	1_{3}
$\mathbf{Z}_{\mathbf{2}}$	+	-	-	-	+	+	+

Quarks	\mathcal{Q}_{L}	Q_{L}	t_{R}	b_{R}	\mathcal{C}_{R}	\mathcal{S}_{R}
\mathbf{T}^{\prime}	1_{1}	2_{1}	1_{1}	1_{2}	2_{3}	2_{2}
$\mathbf{Z}_{\mathbf{2}}$	+	+	+	-	-	+

Higgs	$H_{1_{1}}$	$H_{1_{3}}$	H_{3}	H_{3}^{\prime}
\mathbf{T}^{\prime}	1_{1}	1_{3}	3	3
$\mathbf{Z}_{\mathbf{2}}$	+	-	+	-

Forming Lagrangian Terms

Leptons	L_{L}	τ_{R}	μ_{R}	e_{R}	$N_{\mathrm{R}}^{(1)}$	$N_{\mathrm{R}}^{(2)}$	$N_{\mathrm{R}}^{(3)}$
\mathbf{T}^{\prime}	3	1_{1}	1_{2}	1_{3}	1_{1}	1_{2}	1_{3}
$\mathbf{Z}_{\mathbf{2}}$	+	-	-	-	+	+	+

Quarks	\mathcal{Q}_{L}	Q_{L}	t_{R}	b_{R}	\mathcal{C}_{R}	\mathcal{S}_{R}
T^{\prime}	1_{1}	2_{1}	1_{1}	1_{2}	2_{3}	2_{2}
\mathbf{Z}_{2}	+	+	+	-	-	+

$$
\mathcal{L}_{Y}=M_{1} N_{R}^{(1)} N_{R}^{(1)}+M_{23} N_{R}^{(2)} N_{R}^{(3)}+
$$

Hags	$H_{1_{1}}$	$H_{1_{3}}$	H_{3}	H_{3}^{\prime}	$Y_{e} L_{L} e_{R} H_{3}^{\prime}+Y_{\mu} L_{L} \mu_{R} H_{3}^{\prime}+Y_{\tau} L_{L} \tau_{R} H_{3}^{\prime}+$

T^{\prime}	1_{1}	1_{3}	3	3
$\mathbf{Z}_{\mathbf{2}}$	+	-	+	-

$Y_{t}\left(\mathcal{Q}_{L} t_{R} H_{1_{1}}\right)+Y_{b}\left(\mathcal{Q}_{L} b_{R} H_{1_{3}}\right)+$

$$
Y_{\mathcal{C}}\left(Q_{L} \mathcal{C}_{R} H_{3}^{\prime}\right)+Y_{\mathcal{S}}\left(Q_{L} \mathcal{S}_{R} H_{3}\right)+\text { h.c. }{ }^{13}
$$

Higogs VEVs

$$
\begin{array}{r}
\mathcal{L}_{Y}=M_{1} N_{R}^{(1)} N_{R}^{(1)}+M_{23} N_{R}^{(2)} N_{R}^{(3)}+ \\
Y_{e} L_{L} e_{R} H_{3}^{\prime}+Y_{\mu} L_{L} \mu_{R} H_{3}^{\prime}+Y_{\tau} L_{L} \tau_{R} H_{3}^{\prime}+ \\
Y_{1} L_{L} N_{R}^{(1)} H_{3}+Y_{2} L_{L} N_{R}^{(2)} H_{3}+Y_{3} L_{L} N_{R}^{(3)} H_{3}+ \\
Y_{t}\left(Q_{L} t_{R} H_{1_{1}}\right)+Y_{b}\left(Q_{L} b_{R} H_{1_{3}}\right)+ \\
Y_{\mathcal{C}}\left(Q_{L} \mathcal{C}_{R} H_{3}^{\prime}\right)+Y_{\mathcal{S}}\left(Q_{L} \mathcal{S}_{R} H_{3}\right)+\text { h.c. }
\end{array}
$$

Higgs VEVs

$$
\begin{array}{r}
\mathcal{L}_{Y}=M_{1} N_{R}^{(1)} N_{R}^{(1)}+M_{23} N_{R}^{(2)} N_{R}^{(3)}+ \\
Y_{e} L_{L} e_{R} H_{3}^{\prime}+Y_{\mu} L_{L} \mu_{R} H_{3}^{\prime}+Y_{\tau} L_{L} \tau_{R} H_{3}^{\prime}+ \\
<H_{3}^{\prime}>=\left(\frac{m_{\tau}}{Y_{\tau}}, \frac{m_{\mu}}{Y_{\mu}}, \frac{m_{e}}{Y_{e}}\right) \\
Y_{1} L_{L} N_{R}^{(1)} H_{3}+Y_{2} L_{L} N_{R}^{(2)} H_{3}+Y_{3} L_{L} N_{R}^{(3)} H_{3}+ \\
<H_{1_{1}}>=\left(\frac{m_{t}}{Y_{t}}\right)<H_{1_{3}}>=\left(\frac{\left.\mathcal{Q}_{L} t_{R} H_{1_{1}}\right)+Y_{b}\left(\mathcal{Q}_{L} b_{R} H_{1_{3}}\right)+}{Y_{b}}\right) \\
Y_{\mathcal{C}}\left(Q_{L} \mathcal{C}_{R} H_{3}^{\prime}\right)+Y_{\mathcal{S}}\left(Q_{L} \mathcal{S}_{R} H_{3}\right)+h . c .
\end{array}
$$

Higogs VEVs

$$
\begin{aligned}
& \mathcal{L}_{Y}=M_{1} N_{R}^{(1)} N_{R}^{(1)}+M_{23} N_{R}^{(2)} N_{R}^{(3)}+ \\
& Y_{e} L_{L} e_{R} H_{3}^{\prime}+Y_{\mu} L_{L} \mu_{R} H_{3}^{\prime}+Y_{\tau} L_{L} \tau_{R} H_{3}^{\prime}+ \\
& Y_{1} L_{L} N_{R}^{(1)} H_{3}+Y_{2} L_{L} N_{R}^{(2)} H_{3}+Y_{3} L_{L} N_{R}^{(3)} H_{3}+ \\
& <H_{3}^{\prime}>=\left(\frac{m_{\tau}}{Y_{\tau}}, \frac{m_{\mu}}{Y_{\mu}}, \frac{m_{e}}{Y_{e}}\right) \quad Y_{t}\left(\mathcal{Q}_{L} t_{R} H_{1_{1}}\right)+Y_{b}\left(\mathcal{Q}_{L} b_{R} H_{1_{3}}\right)+ \\
& <H_{1_{1}}>=\left(\frac{m_{t}}{Y_{t}}\right)<H_{1_{3}}>=\left(\frac{m_{b}}{Y_{b}}\right) \quad Y_{\mathcal{C}}\left(Q_{L} \mathcal{C}_{R} H_{3}^{\prime}\right)+Y_{\mathcal{S}}\left(Q_{L} \mathcal{S}_{R} H_{3}\right)+\text { h.c. } \\
& <H_{3}>=(V, V, V) \quad<H_{3}>=(V,-2 V, V)
\end{aligned}
$$

Higgs VEVs

$$
\begin{array}{rr}
\mathcal{L}_{Y}=M_{1} N_{R}^{(1)} N_{R}^{(1)}+M_{23} N_{R}^{(2)} N_{R}^{(3)}+ \\
Y_{e} L_{L} e_{R} H_{3}^{\prime}+Y_{\mu} L_{L} \mu_{R} H_{3}^{\prime}+Y_{\tau} L_{L} \tau_{R} H_{3}^{\prime}+ \\
<H_{3}^{\prime}>=\left(\frac{m_{\tau}}{Y_{\tau}}, \frac{m_{\mu}}{Y_{\mu}}, \frac{m_{e}}{Y_{e}}\right) & Y_{1} L_{L} N_{R}^{(1)} H_{3}+Y_{2} L_{L} N_{R}^{(2)} H_{3}+Y_{3} L_{L} N_{R}^{(3)} H_{3}+ \\
<H_{1_{3}}>=\left(\frac{m_{b}}{Y_{b}}\right) & Y_{t}\left(\mathcal{Q}_{L} t_{R} H_{1_{1}}\right)+Y_{b}\left(\mathcal{Q}_{L} b_{R} H_{1_{3}}\right)+ \\
<H_{1_{1}}>=\left(\frac{m_{t}}{Y_{t}}\right) \\
\left.<H_{L} \mathcal{C}_{R} H_{3}^{\prime}\right)+Y_{\mathcal{S}}\left(Q_{L} \mathcal{S}_{R} H_{3}\right)+h . c . \\
m_{2}>=(V, V, V) & <H_{3}>=(V,-2 V, V) \\
<m_{1}=m_{3}=0 & m_{3} \gg m_{1}=m_{2}
\end{array}
$$

Higogs VEVs

$$
\begin{aligned}
& \mathcal{L}_{Y}=M_{1} N_{R}^{(1)} N_{R}^{(1)}+M_{23} N_{R}^{(2)} N_{R}^{(3)}+ \\
& Y_{e} L_{L} e_{R} H_{3}^{\prime}+Y_{\mu} L_{L} \mu_{R} H_{3}^{\prime}+Y_{\tau} L_{L} \tau_{R} H_{3}^{\prime}+ \\
& Y_{1} L_{L} N_{R}^{(1)} H_{3}+Y_{2} L_{L} N_{R}^{(2)} H_{3}+Y_{3} L_{L} N_{R}^{(3)} H_{3}+ \\
& <H_{3}^{\prime}>=\left(\frac{m_{\tau}}{Y_{\tau}}, \frac{m_{\mu}}{Y_{\mu}}, \frac{m_{e}}{Y_{e}}\right) \quad Y_{t}\left(\mathcal{Q}_{L} t_{R} H_{1_{1}}\right)+Y_{b}\left(\mathcal{Q}_{L} b_{R} H_{1_{3}}\right)+ \\
& <H_{1_{1}}>=\left(\frac{m_{t}}{Y_{t}}\right)<H_{1_{3}}>=\left(\frac{m_{b}}{Y_{b}}\right) \quad Y_{\mathcal{C}}\left(Q_{L} \mathcal{C}_{R} H_{3}^{\prime}\right)+Y_{\mathcal{S}}\left(Q_{L} \mathcal{S}_{R} H_{3}\right)+\text { h.c. } \\
& <H_{3}>=(V,-2 V, V) \\
& m_{2} \gg m_{1}=m_{3}=0 \\
& m_{3} \gg m_{1}=m_{2}
\end{aligned}
$$

Cabibbo Angle Prediction

- Minimal Renormalizable T'Model (No Higgs T' doublets)
* Shared Higgs allow connection between neutrino mixing and Cabibbo Matrix (not full CKM)

$$
\tan 2 \Theta_{12}=\frac{\sqrt{2}}{3}
$$

Method for Quark Mixing Prediction:

* Assume up-type quarks and charged leptons are mass eigenstates
* Complex Clebsch-Gordan coefficients from symmetry

$$
\begin{aligned}
\Theta_{12, \text { predicted }} & =12.6^{\circ} \\
\Theta_{12, \text { experimental }} & =13.0^{\circ}
\end{aligned}
$$

* Diagonalize nontrivial 2x2 quark matrices

Perturbations

Historical Development

$$
\left\langle H_{3}\right\rangle=V^{\prime}(1,-2+b, 1+a)
$$ vs. Optimal Input

What neutrino mixing

$$
\theta_{i j}=\left(\theta_{i j}\right)_{T B M}+\epsilon_{k}
$$ does Cabibbo Angle demand?

$$
\delta\left(M_{\nu}\right)_{\mathrm{diag}}=\left(\begin{array}{ccc}
\delta m_{1} & 0 & 0 \\
0 & \delta m_{2} & 0 \\
0 & 0 & \delta m_{3}
\end{array}\right)
$$

Perturbations in Higgs

$$
=\delta U\left(M_{\nu}\right)_{\mathrm{TBM}} U_{\mathrm{TBM}}^{T}
$$ VEVs and Mixing Angles

$+U_{\mathrm{TBM}} \delta M_{\nu} U_{\mathrm{TBM}}^{T}$
$+\quad U_{\mathrm{TBM}}\left(M_{\nu}\right)_{\mathrm{TBM}} \delta U^{T}$

$\square \cap O Q \rightarrow \backsim$

Yields correlation between Atmospheric and Reactor Mixing Angles

While noting the trivial case restores TBM values, use of Cabibbo Angle input forces symmetry breaking

$\square \cap O Q \rightarrow \backsim$

$$
\theta_{13}=\sqrt{2}\left(\frac{\pi}{4}-\theta_{23}\right)
$$

Yields correlation between Atmospheric and Reactor Mixing Angles

While noting the trivial case restores TBM values, use of Cabibbo Angle input forces symmetry breaking

$$
\theta_{23}=-\frac{1}{\eta} \theta_{13}+\frac{\pi}{4}
$$

Particle Data Group 2010 Review

$$
\theta_{23}=-\frac{1}{\eta} \theta_{13}+\frac{\pi}{4}
$$

$2 \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13}=0.080(\mathrm{DC}, \mathrm{T} 2 \mathrm{~K}, \mathrm{MINOS})$

$$
\theta_{23}=-\frac{1}{\eta} \theta_{13}+\frac{\pi}{4}
$$

Daya Bay Early Results

$$
\theta_{23}=-\frac{1}{\eta} \theta_{13}+\frac{\pi}{4}
$$

Fogli Global Results

$$
\theta_{23}=-\frac{1}{\eta} \theta_{13}+\frac{\pi}{4}
$$

Fogli Global Results (w/ Best Fit)

T' is blind to Octant Degeneracy

$\theta_{23}=-\left|\frac{1}{\eta}\right| \theta_{13}+\frac{\pi}{4}$

Different Global
Analysis by Forero et al.

Due to redefinition of angles, model prediction
is only for correlation magnitude

Though this analysis indicates lower angle precision, best fit value agrees within 2.5\%

Outline

Motivation and Neutrino Review
Building the Minimal Renormalizable T^{\prime} ModelConnections to SM and other BSM physics
Dark Matter from T' SymmetryLimitations and Future Outlook

Choices, Choices

* Need a Higgs doublet to add third family quark mixing
* Several options for the NMRT ${ }^{\prime} \mathrm{M}$
* Many new variables limit new predictions
* Added complexity aside, this remains an intriguing avenue of investigation

A $\quad H_{2_{1}}\left(2_{1},+1\right) \quad Y_{Q t} Q_{\mathrm{L}} t_{\mathrm{R}} H_{2_{1}}$
B $H_{2_{3}}^{\prime}\left(2_{3},-1\right) \quad Y_{Q b} Q_{\mathrm{L}} b_{\mathrm{R}} H_{2_{3}}^{\prime}$
C $H_{2_{2}}^{\prime}\left(2_{2},-1\right) \quad Y_{Q C} Q_{\mathrm{L}} \mathcal{C}_{\mathrm{R}} H_{2_{2}}^{\prime}$
D $H_{2_{3}}\left(2_{3},+1\right) \quad Y_{\mathcal{Q S}} \mathcal{Q}_{\mathrm{L}} \mathcal{S}_{\mathrm{R}} H_{2_{3}}$

Choices, Choices

* Need a Higgs doublet to add third family quark mixing
* Several options for the NMRT ${ }^{\prime} \mathrm{M}$
* Many new variables limit new predictions
* Added complexity aside, this remains an intriguing avenue of investigation

A $\quad H_{2_{1}}\left(2_{1},+1\right) \quad Y_{Q t} Q_{\mathrm{L}} t_{\mathrm{R}} H_{2_{1}}$
B $H_{2_{3}}^{\prime}\left(2_{3},-1\right) \quad Y_{Q b} Q_{\mathrm{L}} b_{\mathrm{R}} H_{2_{3}}^{\prime}$
C $H_{2_{2}}^{\prime}\left(2_{2},-1\right) \quad Y_{\mathcal{Q C}} Q_{\mathrm{L}} \mathcal{C}_{\mathrm{R}} H_{2_{2}}^{\prime}$
D $H_{2_{3}}\left(2_{3},+1\right) \quad Y_{\mathcal{Q S}} \mathcal{Q}_{\mathrm{L}} \mathcal{S}_{\mathrm{R}} H_{2_{3}}$

$$
\mathcal{D}=\left(\begin{array}{cc}
3 & -\frac{\sqrt{2}}{3} \\
-\frac{\sqrt{2}}{3} & 1
\end{array}\right)
$$

Choices, Choices

* Need a Higgs doublet to add third family quark mixing
* Several options for the NMRI' M
* Many new variables limit new predictions
* Added complexity aside, this remains an intriguing avenue of investigation $\left(\begin{array}{ccc}\left(Y_{b}^{\prime} V_{1_{3}}^{\prime}\right)^{2}+\left(Y_{\mathcal{Q} S}^{\prime} V_{2_{3}}^{\prime}\right)^{2} & \frac{1}{\sqrt{6}} Y_{\mathcal{Q} S}^{\prime} V_{2_{3}}^{\prime}(1-2 \sqrt{2} \omega) & \frac{1}{\sqrt{6}} Y_{\mathcal{Q} S}^{\prime} V_{2_{3}}^{\prime}(\omega+\sqrt{2}) \\ \frac{1}{\sqrt{6}} Y_{Q \mathcal{Q}}^{\prime} V_{2_{3}}^{\prime}\left(1-2 \sqrt{2} \omega^{2}\right) & 3 & -\frac{\sqrt{2}}{3} \\ \frac{1}{\sqrt{6}} Y_{Q S}^{\prime} V_{2_{3}}^{\prime}\left(\omega^{2}+\sqrt{2}\right) & -\frac{\sqrt{2}}{3} & 1\end{array}\right)$

B $H_{2_{3}}^{\prime}\left(2_{3},-1\right) \quad Y_{Q b} Q_{\mathrm{L}} b_{\mathrm{R}} H_{2_{3}}^{\prime}$
C $H_{2_{2}}^{\prime}\left(2_{2},-1\right) \quad Y_{\mathcal{Q C}} Q_{\mathrm{L}} \mathcal{C}_{\mathrm{R}} H_{2_{2}}^{\prime}$
D $H_{2_{3}}\left(2_{3},+1\right) \quad Y_{\mathcal{Q S}} \mathcal{Q}_{\mathrm{L}} \mathcal{S}_{\mathrm{R}} H_{2_{3}}$

$$
\mathcal{D}=\left(\begin{array}{cc}
3 & -\frac{\sqrt{2}}{3} \\
-\frac{\sqrt{2}}{3} & 1
\end{array}\right)
$$

A $\quad H_{2_{1}}\left(2_{1},+1\right) \quad Y_{Q t} Q_{\mathrm{L}} t_{\mathrm{R}} H_{2_{1}}$

Choices, Choices

* Need a Higgs doublet to add third family quark mixing
* Several options for the NMRI' M
* Many new variables limit new predictions
* Added complexity aside, this remains an intriguing avenue of investigation $\left(\begin{array}{ccc}\left(Y_{b}^{\prime} V_{1_{3}}^{\prime}\right)^{2}+\left(Y_{\mathcal{Q} S}^{\prime} V_{2_{3}}^{\prime}\right)^{2} & \frac{1}{\sqrt{6}} Y_{\mathcal{Q} S}^{\prime} V_{2_{3}}^{\prime}(1-2 \sqrt{2} \omega) & \frac{1}{\sqrt{6}} Y_{\mathcal{Q} S}^{\prime} V_{2_{3}}^{\prime}(\omega+\sqrt{2}) \\ \frac{1}{\sqrt{6}} Y_{Q \mathcal{Q}}^{\prime} V_{2_{3}}^{\prime}\left(1-2 \sqrt{2} \omega^{2}\right) & 3 & -\frac{\sqrt{2}}{3} \\ \frac{1}{\sqrt{6}} Y_{Q S}^{\prime} V_{2_{3}}^{\prime}\left(\omega^{2}+\sqrt{2}\right) & -\frac{\sqrt{2}}{3} & 1\end{array}\right)$

B $H_{2_{3}}^{\prime}\left(2_{3},-1\right) \quad Y_{Q b} Q_{\mathrm{L}} b_{\mathrm{R}} H_{2_{3}}^{\prime}$
C $H_{2_{2}}^{\prime}\left(2_{2},-1\right) \quad Y_{\mathcal{Q C}} Q_{\mathrm{L}} \mathcal{C}_{\mathrm{R}} H_{2_{2}}^{\prime}$
D $H_{2_{3}}\left(2_{3},+1\right) \quad Y_{\mathcal{Q S}} \mathcal{Q}_{\mathrm{L}} \mathcal{S}_{\mathrm{R}} H_{2_{3}}$

$$
\mathcal{D}=\left(\begin{array}{cc}
3 & -\frac{\sqrt{2}}{3} \\
-\frac{\sqrt{2}}{3} & 1
\end{array}\right)
$$

A $\quad H_{2_{1}}\left(2_{1},+1\right) \quad Y_{Q t} Q_{\mathrm{L}} t_{\mathrm{R}} H_{2_{1}}$

CKM Fits I

CKM Fits II

Quartification

* Toy Quiver Model

$$
\mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\ell} \times \mathrm{SU}(\mathbf{3})_{\mathrm{R}}
$$

* Combines T ${ }^{\prime}$ and SM groups
- A non-specific test of compatibility
* Demands an additional sub-quiver

$$
\left.\begin{array}{l}
(3 \overline{3} 11)_{3} \supset\binom{t}{b}_{\mathrm{L}} \mathcal{Q}_{\mathrm{L}} \tag{1}\\
(3 \overline{3} 11)_{2} \supset\binom{c}{s}_{\mathrm{L}} \\
(3 \overline{3} 11)_{1} \supset\binom{u}{d}_{\mathrm{L}}
\end{array}\right\} Q_{\mathrm{L}}
$$ representation

Outline

Motivation and Neutrino Review
Building the Minimal Renormalizable T^{\prime} ModelConnections to SM and other BSM physics
Dark Matter from T' Symmetry
Limitations and Future Outlook

DM \&c Leptogenesis

* Meanwhile in Valencia...
* New Symmetry, New RH Neutrinos, New Higgs, New Model
* Dark Matter generated from the neutral real scalar parts of Higgs triplet
* New Lagrangian Terms
* If Y_{4} and Y_{5} are complex, they can

$$
\begin{array}{r}
\mathcal{L}_{Y}=M_{0} N_{T} N_{T}+M_{1} N_{R}^{(1)} N_{R}^{(1)}+M_{23} N_{R}^{(2)} N_{R}^{(3)}+ \\
Y_{e} L_{L} e_{R} H_{3}^{\prime}+Y_{\mu} L_{L} \mu_{R} H_{3}^{\prime}+Y_{\tau} L_{L} \tau_{R} H_{3}^{\prime}+ \\
Y_{1} L_{L} N_{R}^{(1)} H_{3}+Y_{2} L_{L} N_{R}^{(2)} H_{3}+Y_{3} L_{L} N_{R}^{(3)} H_{3}+ \\
Y_{4} L_{L}\left(N_{T} H_{3}^{\prime \prime}\right)_{3}+Y_{5} L_{L}\left(N_{T} H_{3}^{\prime \prime}\right)_{3^{\prime}}+ \\
Y_{t}\left(\mathcal{Q}_{L} t_{R} H_{1_{1}}\right)+Y_{b}\left(\mathcal{Q}_{L} b_{R} H_{1_{3}}\right)+ \\
Y_{\mathcal{C}}\left(Q_{L} \mathcal{C}_{R} H_{3}^{\prime}\right)+Y_{S}\left(Q_{L} \mathcal{S}_{R} H_{3}\right)+\text { h.c. }
\end{array}
$$ yield Leptogenesis

* Relic Density leads to approximate WIMP mass of $\approx 1.62 \mathrm{TeV}$

Outline

Motivation and Neutrino Review
Building the Minimal Renormalizable T^{\prime} ModelConnections to SM and other BSM physics
Dark Matter from T' Symmetry
Limitations and Future Outlook

Limitations and Unanswered Questions

* Hopes for Future Work:
* Higher-Order Calc. w/o Fine-Tuning
* Combining with SUSY or other GUTs
* Leptogenesis:
* CP-Violating Phase - Practical Limitation
* Evaluating potential in T' WIMP Model
* Structural Limitations:
- Solar Mass Split - Symmetry Limitation

* NMRT ${ }^{\prime}$ M with all CKM Angles
Conclusions
* We unify TBM breaking with precise CKM angles
* Successful Predictions:
* TBM Symmetry is broken
* Global fits indicate η lies within 5% of our expectation
* Intriguing Dark Matter Candidate with interesting behavior
* We need more data to understand neutrinos (don't we always?)
* Between new detectors, new results, and new theories this remains an exciting time in neutrino physics

Thank you for coming! Questions?

