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Why is 1-D special? 



Spin-charge separation 

photon 
Photo-

electron 

holon spinon 

The excitations don’t carry the same quantum numbers as the original 

electron  zero quasi-particle weight 



Hubbard and t-J model 

Hubbard model: 

t-J model (no double occupancy): 

Large U 

Kinetic energy On-site 

interaction 

Heisenberg 



Real-time simulation 
Half-filled Hubbard model (L=160, U=4) 

See for instance E. Jagla, K. Hallberg and C. Balseiro, PRB (93), and C. Kollath, U. Schollwock, and W. Zwerger, PRL (05) 



Lightcones 
Spin Charge 

Spin and charge propagate with different velocities 

See for instance E. Jagla, K. Hallberg and C. Balseiro, PRB (93), and C. Kollath, U. Schollwock, and W. Zwerger, PRL (05) 



Spin and charge excitations 
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ARPES at T=0  
1D t-J model (J=0.5) 
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Finite temperature physics 



Spin incoherent behavior 

q 

w 
holon 

spinon 

T J 

See G. Fiete, RMP (07); B. Halperin, J. Appl. Phys (05), Cheianov and Zvonarev (04) 
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ARPES at T=0  

1D t-J model (J=0.05) 



Results: Thermodynamics 

J=0.05; L=32, N=24; n=0.75 



Correlation functions 
J=0.05; L=32, N=24; n=0.75 

Spin structure 

factor 
Momentum 

distribution 



Fermi momentum 
J=0.05; L=32, N=24; n=0.75 



From spin-full to spin-less fermions 

F F 

2kF -2kF 

E 

kF 
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Spin-full fermions: we 

can put two fermion per 

state (one up, one down) 

Spin-less fermions: we 

can put only one fermion 

per state 

T>J 



ARPES at finite T 
L=32, N=24, J=0.05 



SILL regime 

H. Steinberg et al., PRB (06) 

DMRG, b=10 
Experiment 

AEF and G. Fiete 



Infinite “spin temperature” 

|I0=
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We trace over ancilla: 
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The density matrix corresponds to the physical spin 

at infinite temperature! 

↑: “physical” spin 

↓: “ancilla” 

Takahashi and Umezawa, Collect Phenom. 2, 55 (1975), Verstraete PRL 2004, Zwolak PRL 2004 

We introduce and auxiliary spin (ancilla) 



T-dependent 
entanglement 

•The ancillas and the real sites do not interact! 

•The global state is modified by the action of the Hamiltonian 
on the real sites, that are entangled with the ancillas.  

•The mixed state can be written as a pure state in an enlarged 
Hilbert space (ladder-like). 

Many spins 

 |y(β)=e-βH/2 |I  

The thermal state is equivalent to evolving the maximally mixed 

state in imaginary time: 

AEF and S. R. White, PRB, Rapid (05) 



The factorized wave function 

s1s2s3…sN 

charge 
spin 

In the limit U,J0 

All configurations are 

degenerate 

(Ogata and Shiba) 

This is not true with periodic boundary conditions: the spin 

introduces a twist in the fermion wave-function when a fermion 

hops across a boundary. 



The factorized wave function 

(infinite spin Temperature) 

s1s2s3…sN 

charge 

Spin-ancilla 

singlets 

O(β) 



The intepretation of the spectrum 
R. Eder and Y. Ohta, ‘97 

The spectrum of the does 

not change with 

temperature!  

The spectral function is a 

convolution of the one from 

the spinless fermions and 

the spins. The spectral 

weight of the spins gets 

redistributed (in momentum 

k!), and changes the 

behavior of the spectral 

function.   



SI behavior in the ground state 
of strongly interacting models 



(I) t-J ladders 
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AEF and G. Fiete 
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(I) t-J ladders 

J’ 

t-J 

t’=0 

2121g.s.  =J=0,J’=0) 

In the intermediate regime, the spin will get entangled 

first, before the charges get entangled to form heavy 

pairs: 

S= 21g.s. 

similar to Ogata and Shiba wave 

function at infinite spin T!!! 



Correlation functions (J=0.05) 



t-J ladder lattice at T=0 
L=32,N=24,J=0.05 

’ ’ 
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(II) Kondo lattice 

JK 
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The factorized wave function in 
the limit J0, JK=0 

s1s2s3…sN 

charge 
spin 

All spin configurations are degenerate. 

When we turn on the interactions with the impurities JK :  

(i) The system becomes ferromagnetic,  

(ii) The conduction spins and the impurities get entangled 

(iii) An exponentially small charge gap opens (to break a pair)  

s =g.s.

s1s2s3…sL 

impurities 



The factorized wave function in 
the limit J0 

s =g.s.

JK  

=  ...Sg.s. 

“heavy” charge 
)cos()( ktk =

singlets 
FM Unpaired 

impurities 

These get 

entangled first 

state b-mspin g.s. = 



Ground state energy and effective 
“specific heat” (J=0.05) 



Correlation functions 



Kondo lattice at T=0 
L=32,N=24,J=0.05 



Toward a unified formalism 



The factorized wave function 

s1s2s3…sN 

charge 
spin 

In the limit U,J0 

All configurations are 

degenerate 

(Ogata and Shiba) 

cis  fi Zis H=Hc+Hs 

charge spin 



Variational formulation for the t-J ladder 

J’ 
t’=0 

J=0 

Intuitive argument (we assume periodic boundary conditions):  

- All spins see a partner on the opposite leg with equal probability. 

- When this happens, they become maximally entangled (form a singlet). 

- Entanglement persists when they move apart since there are no 

competing interactions along the leg. 

== xSS ;g.s. *

The sum is over all possible 

valence bond coverings 

between the spins of opposite 

legs 



Results for t-J ladders 



Momentum distribution function 
(for a single chain) 
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DMRG (L=30) 
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Results for the Kondo lattice 

JK 

t-J (J=0) 

=  ...Sg.s. 



Momentum distribution function 
DMRG (L=30) 



MDF per spin 

DMRG (L=30) 

Luttinger 

Liquid Fermi Liquid 



Conclusions 
•We showed an application of the time dependent DMRG 
combining evolution in real-time and imaginary time. 

•We studied the crossover from spin incoherent to spin 
coherent behavior 

•We generalized the Ogata and Shiba’s factorized wave 
function to finite spin temperatures 

•We found that the t-J ladder in some regime of 
parameters and the Kondo lattice exhibit SI behavior in 
the ground-state. 

•This SI behavior is not exactly 
SILL, but results indicate that it 
might be possible to describe it 
within the same framework, and 
may present some universal 
features. 

•Is a “half-Luttinger liquid” a new 
kind of physics? 

 





Evolution in imaginary time: 

single spin 

|I0=
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We trace over ancilla: 
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The density matrix corresponds to the physical spin 

at infinite temperature! 

↑: “physical” spin 

↓: “ancilla” 

Takahashi and Umezawa, Collect Phenom. 2, 55 (1975), Verstraete PRL 2004, Zwolak PRL 2004 

We introduce and auxiliary spin (ancilla) 



T-dependent 
entanglement 

•The ancillas and the real sites do not interact! 

•The global state is modified by the action of the Hamiltonian 
on the real sites, that are entangled with the ancillas.  

•The mixed state can be written as a pure state in an enlarged 
Hilbert space (ladder-like). 

Evolution in imaginary time 
The thermal state is equivalent to evolving the maximally mixed 

state in imaginary time: 

 |y(β)=e-βH/2 |I  



Evolution in imaginary time: 
Thermal averages 

AEF and S. R. White, PRB, Rapid (05) 

y (β)|y (β) 

A thermal average : 

Can be obtained using a wave function instead of 

density matrices!!! 

 with Z(β)=y (β)|y (β) 

y (β)|A|y (β) 



Green’s functions 

The finite temperature Green’s function can be obtained as:  

Since the thermal state is not an eigenstate, we need to 

evolve in time both:  



(II) Kondo lattice 

JK 

t-J 

McCulloch et al, PRB ’02, K. Hallberg et al, PRL ‘04 
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Tsunetsugu, Sigrist, Ueda, RMP ‘97 



(I) Kondo lattice 

JK 

t-J 

McCulloch et al, PRB ’02, K. Hallberg et al, PRL ‘04 

J=0.05 

Tsunetsugu, Sigrist, Ueda, RMP ‘97 



The factorized wave function in the 
limit J0, JK=0 

s1s2s3…sN 

charge 
spin 

All spin configurations are degenerate. 

When we turn on the interactions with the impurities JK :  

(i) The system becomes ferromagnetic,  

(ii) The conduction spins and the impurities get entangled 

(iii) An exponentially small charge gap opens (to break a pair)  

s =g.s.
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impurities 



The factorized wave function in the 

limit J0, JK  

s =g.s.
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Ogata and Shiba wave 

function at infinite spin T!!! 


