# Superconducting quarks: Condensed Matter in the Heavens

Mark Alford Washington University in St. Louis

# Outline

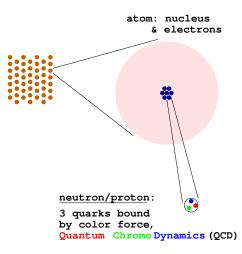
I Quarks at high density

Confined, quark-gluon plasma, color superconducting

II Color superconductivity

Color-flavor locking (CFL), and beyond

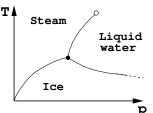
III Compact stars


Transport properties, equation of state

 $\ensuremath{\mathsf{IV}}$  Looking to the future

M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arXiv:0709.4635 (RMP) A. Schmitt, arXiv:1001.3294

## I. Quarks at high density


Quarks: Building blocks of matter



Quarks have color and flavor ("up" or "down") proton: uud, uud, uud neutron: udd, udd, udd

## **Phase Transitions**

When you heat up or compress matter, the atoms *reconfigure* themselves. You get phase transitions between solid, liquid, and gas.



At super-high temperatures or densities, when the nuclei are constantly bashed around or remorselessly crushed together, do *quarks* reconfigure themselves?

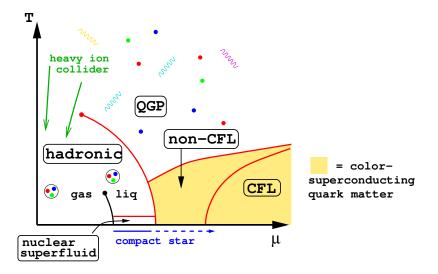
 $T\sim 150~{
m MeV}~\sim 10^{12}~{
m K}$  $ho\sim 300~{
m MeV/fm^3}\sim 10^{17}~{
m kg/m^3}$ 

At such a density, a oil supertanker is 1mm<sup>3</sup> in size.

Where might this occur?

- supernovas, neutron stars;
- Brookhaven (AGS, RHIC); CERN (SPS, LHC)

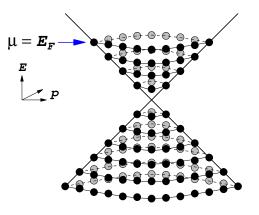
## Interactions between Quarks


Dominant interaction between quarks is the strong interaction, described by SU(3) "color" non-Abelian gauge theory (QCD). Properties of QCD

- Short distances, r ≪ 1 fm, asymptotically free : gauge coupling g ≪ 1, single gluon exchange dominates, the theory is analytically tractable.
- Long distances r > 1 fm, QCD confines: color electric fields form flux tubes, only color-neutral states, baryons and mesons, exist.

► At low temperature (T ≤ 170 MeV), Chiral (left-right) symmetry is broken : color force can't turn a LH quark to RH, but our vacuum is full of q<sub>L</sub>q<sub>R</sub> pairs




## **Conjectured QCD phase diagram**

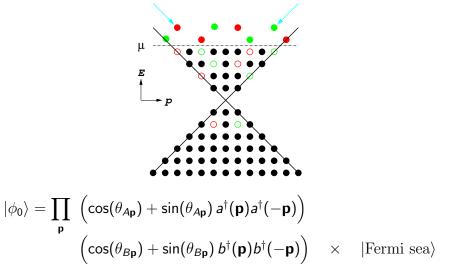


heavy ion collisions: chiral critical point and first-order line compact stars: color superconducting quark matter core

# Color superconductivity

At sufficiently high density and low temperature, there is a Fermi sea of almost free quarks.




$$F = E - \mu N$$

$$\frac{dF}{dN} = 0$$

But quarks have attractive QCD interactions.

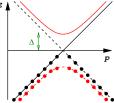
Any attractive quark-quark interaction causes pairing instability of the Fermi surface: BCS mechanism of superconductivity. BCS in guark matter: Ivanenko and Kurdgelaidze, Lett. Nuovo Cim. IIS1 13 (1969).

#### What is a condensate of Cooper pairs?



 $|\phi_0\rangle$ , not  $|\text{Fermi sea}\rangle$ , is the ground state.

## Physical consequences of Cooper pairing


Changes low energy excitations, affecting transport properties.

- spontaneous breaking of global symmetries: Goldstone bosons, massless degrees of freedom that dominate low energy behavior.
- spontaneous breaking of local (gauged) symmetries: massive gauge bosons, exclusion of magnetic fields (Meissner effect).
- create a gap in fermion spectrum.

Adding a fermion of momentum  $\vec{p}$  near the Fermi surface disrupts the condensate in that mode:

$$a^{\dagger}_{p}(\cos heta+\sin heta\,a^{\dagger}_{p}a^{\dagger}_{-p})=\cos heta\,a^{\dagger}_{p}$$

This kills that mode's contribution to the binding energy of the condensate, i.e "breaks a Cooper pair", costing energy  $\Delta$ .



# Handling QCD at high density

- Lattice: "Sign problem"-negative probabilities
- **SUSY:** Statistics crucial to quark Fermi surface
- large N: Large corrections
  - **pert**: Applicable far beyond nuclear density. Neglects confinement and instantons.
  - NJL: Model, applicable at low density. Follows from instanton liquid model.



**EFT**: Effective field theory for lightest degrees of freedom. "Parameterization of our ignorance": assume a phase, guess coefficients of interaction terms (or match to pert theory), obtain phenomenology.

## **High-density QCD calculations**

Guess a color-flavor-spin pairing pattern P; to obtain gap  $\Delta_P$ , minimize free energy  $\Omega$  with respect to  $\Delta_P$  and impose color and electric neutrality

$$rac{\partial\Omega}{\partial\Delta_P} = 0 \qquad rac{\partial\Omega}{\partial\mu_i} = 0$$

The pattern with the lowest  $\Omega(\Delta_P)$  wins!

- 1. Weak-coupling methods. First-principles calculations direct from QCD Lagrangian, valid in the asymptotic regime, currently  $\mu\gtrsim 10^6$  MeV.
- 2. Nambu–Jona-Lasinio models, ie quarks with four-fermion coupling based on instanton vertex, single gluon exchange, etc. This is a semi-quantitative guide to physics in the compact star regime  $\mu \sim 400$  MeV, not a systematic approximation to QCD.
- NJL gives  $\Delta \sim 10\!-\!100$  MeV at  $\mu \sim 400$  MeV.

### Gap equation in a simple NJL model

RHS

Minimize free energy wrt  $\Delta$ :

$$1 = \frac{8K}{\pi^2} \int_0^{\Lambda} p^2 dp \left\{ \frac{1}{\sqrt{\Delta^2 + (p-\mu)^2}} \right\} \qquad 1$$

Note BCS divergence as  $\Delta \rightarrow 0$ : there is *always* a solution, for any interaction strength K and chemical potential  $\mu$ . Roughly,

$$1 \sim K \mu^2 \ln (\Lambda / \Delta)$$
  
 $\Rightarrow \Delta \sim \Lambda \exp \left( - \frac{1}{K \mu^2} \right)$ 

Superconducting gap is non-perturbative.

## **Color superconducting phases**

Quark Cooper pair:  $\langle q_{ia}^{\alpha} q_{jb}^{\beta} \rangle$ 

color  $\alpha, \beta = r, g, b$ flavor i, j = u, d, sspin  $a, b = \uparrow, \downarrow$ 

There is a  $9 \times 9$  matrix of possible BCS pairing patterns!

The attractive channel is: color antisymmetric ⇒ flavor antisymmetric

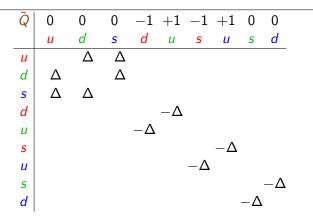
So pairing between *different flavors* is favored.

Let's start with the most symmetric case, where all three flavors are massless.

# Color supercond. in 3 flavor quark matter: Color-flavor locking (CFL)

Equal number of colors and flavors gives a special pairing pattern (Alford, Rajagopal, Wilczek, hep-ph/9804403)

$$\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \delta_i^{\alpha} \delta_j^{\beta} - \delta_j^{\alpha} \delta_i^{\beta} = \epsilon^{\alpha \beta n} \epsilon_{ijn}$$


color  $\alpha, \beta$ Theflavor i, jpc

This is invariant under equal and opposite rotations of color and (vector) flavor

$$\underbrace{SU(3)_{\text{color}} \times \underbrace{SU(3)_L \times SU(3)_R}_{\supset U(1)_Q} \times U(1)_B \rightarrow \underbrace{SU(3)_{C+L+R}}_{\supset U(1)_{\widetilde{Q}}} \times \mathbb{Z}_2}_{\supset U(1)_{\widetilde{Q}}}$$

- Breaks chiral symmetry, but *not* by a  $\langle \bar{q}q \rangle$  condensate.
- There need be no phase transition between the low and high density phases: ("quark-hadron continuity")
- ▶ Unbroken "rotated" electromagnetism, Q, photon-gluon mixture.

### Color-flavor-locked ("CFL") quark pairing



### **III.** Quark matter in compact stars

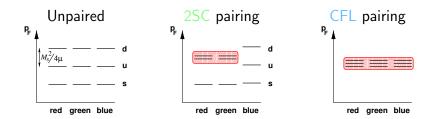
Where in the universe is color-superconducting quark matter most likely to exist? In compact stars.

A quick history of a compact star.

A star of mass  $M \gtrsim 10 M_{\odot}$  burns Hydrogen by fusion, ending up with an Iron core. Core grows to Chandrasekhar mass, collapses  $\Rightarrow$ supernova. Remnant is a compact star:

| mass                              | radius                       | density                    | initial temp  |
|-----------------------------------|------------------------------|----------------------------|---------------|
| $\sim 1.4 \ensuremath{M_{\odot}}$ | $\mathcal{O}(10 \text{ km})$ | $\gtrsim  ho_{ m nuclear}$ | $\sim$ 30 MeV |

The star cools by neutrino emission for the first million years.


### The real world: $M_s$ and neutrality

In the real world there are three complications to the simple account given so far.

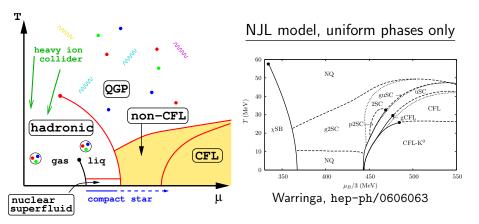
- 1. Strange quark mass is not infinite nor zero, but intermediate. It depends on density, and ranges between about 500 MeV in the vacuum and about 100 MeV at high density.
- **2.** Neutrality requirement. Bulk quark matter must be neutral with respect to all gauge charges: color and electromagnetism.
- **3.** Weak interaction equilibration. In a compact star there is time for weak interactions to proceed: neutrinos escape and flavor is not conserved.

So quark matter in a compact star might be CFL, or something else: gapless CFL; kaon-condensed CFL, 2SC, 1SC, crystalline,...

## Cooper pairing vs. the strange quark mass



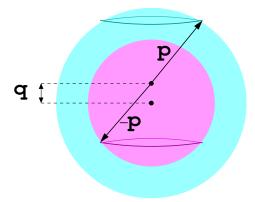
CFL: Color-flavor-locked phase, favored at the highest densities.


$$\langle q_i^{\alpha} q_j^{\beta} \rangle \sim \delta_i^{\alpha} \delta_j^{\beta} - \delta_j^{\alpha} \delta_i^{\beta} = \epsilon^{\alpha \beta N} \epsilon_{ijN}$$

2SC: Two-flavor pairing phase. May occur at intermediate densities.

$$\langle q_i^{lpha} q_j^{eta} 
angle \sim \epsilon^{lpha eta 3} \epsilon_{ij3} \sim (rg - gr)(ud - du)$$

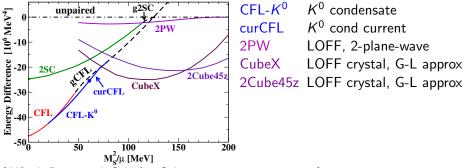
or: Exotic non-BCS pairing: LOFF (crystalline phase), p-wave meson condensates, single-flavor pairing (color-spin locking, ~liq <sup>3</sup>He-B).


#### Phases of quark matter, again



But there are also non-uniform phases, such as the crystalline ("LOFF" /"FFLO") phase. (Alford, Bowers, Rajagopal, hep-ph/0008208)

# Crystalline (LOFF) superconductivity


When the Fermi momenta are such that one flavor of quark is just barely excluded from pairing with another, it may be favorable to make pairs with a net momentum, so each flavor can be close to its Fermi surface.



Every quark pair in the condensate has the same nonzero total momentum 2q (single plane wave LOFF).

### Free energy comparison of phases

Assuming  $\Delta_{\rm CFL} = 25$  MeV.



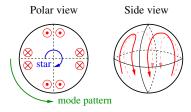
(Alford, Rajagopal, Schäfer, Schmitt, arXiv:0709.4635)

Curves for CubeX and 2Cube45z use G-L approx far from its area of validity: favored phase at  $M_s^2 \sim 4\mu\Delta$  remains uncertain.

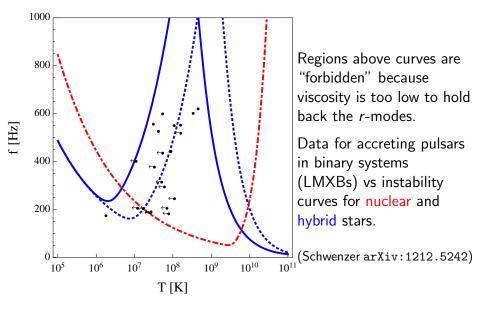
# Signatures of color superconductivity in compact stars

Pairing energy {affects Equation of state. Hard to detect. (Alford, Braby, Paris, Reddy, nucl-th/0411016)

Gaps in quark spectra<br/>and Goldstone bosonsaffect Transport properties :<br/>emissivity, heat capacity, viscosity (shear, bulk),<br/>conductivity (electrical, thermal)...


1. Cooling by neutrino emission, neutrino pulse at birth

- **2.** Glitches and crystalline ("LOFF") pairing
- **3.** Gravitational waves: r-mode instability, shear and bulk viscosity


# r-modes: gravitational spin-down of compact stars

An r-mode is a quadrupole flow that emits gravitational radiation. It becomes unstable (i.e. arises spontaneously) when a star spins fast enough, and if the shear and bulk viscosity are low enough.

Andersson gr-qc/9706075 Friedman and Morsink gr-qc/9706073



#### **Constraints from r-modes**



## IV. Looking to the future

- Neutron-star phenomenology of color superconducting quark matter:
  - mass-radius and equation of state
  - analysis of r-mode spindown vs data
  - elimination/evaluation of other r-mode damping mechanisms
  - neutrino emissivity and cooling
  - structure: nuclear-quark interface (gravitational waves?)
  - color supercond. crystalline phase (glitches) (gravitational waves?)
  - CFL: vortices but no flux tubes; stability of vortices...
- More general questions:
  - instability of gapless phases; better treatment of LOFF
  - better weak-coupling calculations
  - role of large magnetic fields
  - solve the sign problem and do lattice QCD at high density.