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1. Motivation for studying methane
Motivation for Studying Methane Isotopes

On Earth
~1800 ppb

CH4 is a 80 times stronger green house gas than CO2
on molecule-for molecule basis.
Warms up atmosphere and helps form ozonepp Warms up atmosphere and helps form ozone.

Peaking when it's warm in some regions. 
Might be a sign of biological activities

On Mars
~10 ppb Might be a sign of biological activities.10 ppb

Fig 1. Concentrations of Methane discovered on Mars <1>

<1> Credit:NASA



Motivation for Studying Methane Isotopes
2. Motivation for studying methane’s isotopes

Methane sources on earth: 

Three major isotopes of methane: CH4, CH3D and 13CH4

Human activities
(About 2/3): 
fossil-fuel extractionfossil fuel extraction
rice paddies
Landfills
cattlecattle…
Natural sources 
(About 1/3): 

tl d h d twetlands, gas hydrates, 
permafrost, termites, 
oceans, freshwater bodies, 
non-wetland soils, 
wildfires…

Fig 2. Isotope ratio measurements on CH4 
<2> 

<2> Onstott, Astrobiology, 2006



Cavity Ring-down Spectroscopy
1. CRDS

Fig 3. Schematic of pulsed CRD technique <3>
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• High sensitivity due to long absorption length.
• Immune to intensity variations in laser.

Hi h th h t i di id l i d t• High throughput: individual ring down events occur 
on the millisecond time scale.

<3> K. K. Lehmann et. Al, An Introduction to Cavity Ring-Down Spectroscopy, 2009



Cavity Ring-down Spectroscopy
2. Experimental Setup

DFB diode Lasers
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Cavity Ring-down Spectroscopy
3. DFB laser diode

Simple and small design.
Grating structure within the semi-

conductor material, to serve as theconductor material, to serve as the 
wavelength selective element and 
reflects light back into the cavity to 
form the resonator.

Ad

Tuning is accomplished by 
modulating either laser current or 
operating temperature.

Advantages:
•  Absence of any critical opto-mechanical components
• High long-term stability and reliability

g

g g y y
Applications:

• High-resolution spectroscopy
• Laser cooling ultra cold atoms• Laser cooling, ultra-cold atoms
• Plasma physics
• Trace gas analysis

C b ti it i• Combustion monitoring
• Seed laser for LIDAR measurements
• Generation of tunable CW THz radiation
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Fig 5. Cavity ring-down spectroscopy 
of CH D in ~ 8 3 Torr N buffer gas
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Fig 6 (a) Line strengths of CH3D in the 
wavelength range of 6017 5 6031 5 cm-1of CH3D in ~ 8.3 Torr N2 buffer gas. 

The CH3D number density was 
5.2×1013 molecule/cm3.
The temperature tuning coefficient is

wavelength range of 6017.5 – 6031.5 cm .
The total pressure in the cavity was around 8.3 
Torr. The CH3D number densities varied
between 0 5-2 0 ×1014 molecule/cm3The temperature tuning coefficient is 

approximately -12.5 GHz/oC, i.e. -0.42 
cm-1/oC.

between 0.5 2.0 ×10 molecule/cm . 

Fig 6 (b) CH3D absorption spectrum from 
reference ( room temperature, 76.7 Torr

105 b ti th l th)pressure, 105 m absorption path length). 
Resolution is 0.01 cm-1.  A CH4 absorption 
line is marked with an asterisk.



Table 1. Part of Line strengths of CH3D in the 6017.5 – 6031.5 and 6046.5 – 6070.0 cm-1 wavenumber
region, and the possible quantum numbers of the perpendicular band 2ν4(E) transitions along with their 
calculated absorption positions and intensities. Not all the CH3D lines were assigned. Measured linecalculated absorption positions and intensities.  Not all the CH3D lines were assigned.  Measured line 
strengths correspond to cm per CH3D molecule. Transitions with star (*) belong to the parallel band 
2ν4(A1), whose absorption positions and intensities were not simulated.



1. CH3D Measurements
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Fig 7. The N2 (square and solid line) and O2
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Fig 8. The N2 (square and solid line), O2
(circle and dash line), and CO2 (triangle 
and dotted line) pressure dependence of 

0 50 100 150 200 250

Pressure (Torr)

(circle and dash line) pressure-broadening 
coefficients (HWHM) of the CH3D absorption 
line at 6017.941 cm-1. The scattering symbols 
are measurements and the lines are linear fits

the CH3D absorption peak at ~ 6032.443 
cm-1. The scattering symbols are 
measurements and the lines are linear fits. 

are measurements and the lines are linear fits. 
The slope of the linear fit is defined as 
pressure-broadening coefficient for HWHM.

The slope of the linear fit is defined as 
pressure-shift coefficient.
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2. CH2D2 Measurements

4x10-21

5x10-21

3x10-21

4x10

le
cu

le
)

2x10-21

cm
2 /m

o

1x10-21σ 
/ (

6120 6100 6080 6060 6040 6020 6000

0

/ -1υ / cm 1

Fig 9. CRDS of CH2D2 absorption spectra in 16 Torr N2 buffer gas 
measured by 6 different DFB diode lasers. The CH2D2 numbermeasured by 6 different DFB diode lasers. The CH2D2 number 
density was 9.87x1013 molecule/cm3.



Why do we want to lock the laser:
3. Electronic Feedback for locking lasers
Why do we want to lock the laser:
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3. Electronic Feedback for locking lasers
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3. Tuning PID control
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3. Tuning PID control
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Fig 16. Comparison of laser jitter when using feedback with different PID parameters

PID parameters Mean / MHz Standard Deviation / MHz
No feedback applied 12.75845 4.3672

P i l f db k l 3 25909 1 93233Proportional feedback only -3.25909 1.93233

Larger Proportional feedback -1.46707 1.25413

Ziegler-Nichols Method -0.77357 1.44293

Tyreus-Luyben Method -0.00046 0.18393



4. Temperature Tuning System

(1) Previous fixed current method(1) Previous fixed current method
U is controlled by D/A and PC.
T t b t f St i h t E tiTemperature can be get from Steinhart Equation

1/T = C1 + C2 ln (R) +C3 [ln (R)]3

Where C1 = 1 1292E-3 C2 = 2 3411E-4Where C1  1.1292E 3, C2  2.3411E 4, 
C3 = 8.7755E-8, I = 100 μA, R = U / I.

(2) New voltage divider method
Instead of a fixed I, we used a voltage divider, with the , g ,
thermistor in series with fixed resistor R', and both thermister R 
and fixed resistor R' are driven by a fixed voltage source U'. 

h l ill b i l ' ' /( ' )The output voltage will be proportional to R'. R=R'×U/(U'-U)



4. Temperature Tuning System
Fixed Current Temperature Tuning
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Future PlansFuture Plans

I. Super narrow linewidth DFB lasers
II Electronic feedback and temperatureII. Electronic feedback and temperature 

tuning on all lasers
III.Implement cavity locking with 

predicted wavelength shiftpredicted wavelength shift
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