Fractional topological insulators

Claudio Chamon

Christopher Mudry - PSI
Titus Neupert - PSI
Shinsei Ryu - Berkeley
Luiz Santos - Harvard

PRL 106, 236804 (2011)
PRB 84, 165107 (2011)
PRB 84, 165138 (2011)
PRL 108, 046806 (2012)
arXiv:1202.5188

Fractional topological insulators

Claudio Chamon

Christopher Mudry - PSI
Titus Neupert - PSI
Shinsei Ryu - Berkeley
Luiz Santos - Harvard

PRL 106, 236804 (2011)
PRB 84, 165107 (2011)
PRB 84, 165138 (2011)
PRL 108, 046806 (2012)
arXiv:1202.5188

Landau flat bands

Landau levels

Landau flat bands are interesting!

Partially filled Landau levels

source:
Willett et al, PRL 1987

FIG. 1. Overview of diagonal resistivity $\rho_{x x}$ and Hall resistance $\rho_{x y}$ of sample described in text. The use of a hybrid magnet with fixed base field required composition of this figure from four different traces (breaks at $\simeq 12 \mathrm{~T}$). Temperatures were $\approx 150 \mathrm{mK}$ except for the high-field Hall trace at $T=85 \mathrm{mK}$. The high-field $\rho_{x x}$ trace is reduced in amplitude by a factor 2.5 for clarity. Filling factor v and Landau levels N are indicated.

Are there other ways to get flat bands?

Are they as interesting as Landau levels?

Early flat bands

D. Weire and M. F. Thorpe, PRB 4, 2508 (1971) J. P. Straley, PRB 6, 4086 (1972)

FIG. 3. Coefficients of the basis functions $1-\dot{4}$ associated with a given atom, in the expansion of a given wave function, are the elements of the vector \vec{u} defined in the text. The coefficients of $1^{\prime}-4^{\prime}$ form the vector $\overrightarrow{\mathrm{v}}$.

FIG. 13. A unit cell of the diamond cubic structure, illustrating the notation used to set up the secular determinant.

FIG. 11. Band structure for the special case of the diamond cubic structure, with $V_{2}=-1$, $V_{1}=-1$.

More early flat bands

Fig. 2. A two-dimensional example showing the position of the variables used in eq. (1).

Of the generic form in J. P. Straley, PRB 6, 4086 (1972)

Motivation was to get Weyl fermions on the lattice, with a single cone

Possible flat band energies in the Kagome model
D. Green, L. Santos, and C. Chamon, PRB 2010

$$
\begin{array}{cll}
E=-2 g & \text { Flat very bottom band } & \phi_{ \pm}=2 \pi n_{ \pm} \\
E=+2 g & \text { Flat very top band } & \phi_{ \pm}=\pi\left(2 n_{ \pm}+1\right) \\
E=0 & \text { Flat middle band } & \phi_{+}+\phi_{-}=\pi(\bmod 2 \pi)
\end{array}
$$

Flat band as a "critical point"

$$
\phi_{+}=\phi_{-}=3(\pi / 2-\epsilon)
$$

Can go on and on...
 Parallel flat bands- honeycomb lattice w/ 3 flavors

口
 Are there other ways to get flat bands?

D Are they as interesting as Landau levels?

- Are there other ways to get flat bands?

- Are they as interesting as Landau levels?

D Are they as interesting as Landau levels?

Up to that point, had examples of flat bands with zero Chern number

Quantum Hall effect w/o Landau levels

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

$$
\sigma_{x y}=-1
$$

$$
\sigma_{x y}=+1
$$

Can one flatten bands with a Chern number?

YES!

T. Neupert, L. Santos, C. Chamon, and C. Mudry, PRL 2011
E. Tang, J. W. Mei, and X. G. Wen, PRL 2011
K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, PRL 2011

Quantum Hall effect w/o Landau levels

$$
\begin{aligned}
& t_{2} / t_{1}=\frac{\sqrt{43}}{12 \sqrt{3}} \approx 0.315495 \quad \cos \Phi=\frac{1}{4} \frac{t_{1}}{t_{2}} \\
& \delta_{-} / \Delta=1 / 7
\end{aligned}
$$

Quantum Hall effect w/o Landau levels

$$
\begin{aligned}
& t_{2} / t_{1}=\frac{1}{\sqrt{2}} \\
& \delta_{-} / \Delta \approx 1 / 5
\end{aligned}
$$

Can one get perfectly flat bands?

$$
H_{0}=\sum_{k \in \mathrm{BZ}} \psi_{k}^{\dagger} \mathcal{H}_{\boldsymbol{k}} \psi_{\boldsymbol{k}}, \quad \mathcal{H}_{\boldsymbol{k}}=\boldsymbol{B}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma}
$$

$$
\psi_{\boldsymbol{k}}^{\dagger}=\left(c_{\boldsymbol{k}, \mathrm{A}}^{\dagger}, c_{\boldsymbol{k}, \mathrm{B}}^{\dagger}\right)
$$

$$
\mathcal{H}_{\boldsymbol{k}}^{\text {flat }}:=\frac{\mathcal{H}_{\boldsymbol{k}}}{\left|\varepsilon_{-, \boldsymbol{k}}\right|} \Rightarrow \text { In real space, hoppings decay exponentially with distance }
$$

D Is there a FQHE when flat bands with non-zero Chern number are partially fixed?

Add interactions

$$
H_{\mathrm{int}}:=\frac{1}{2} \sum_{i, j} \rho_{i} V_{i, j} \rho_{j} \equiv V \sum_{\langle i j\rangle} \rho_{i} \rho_{j}, \quad V>0
$$

Chern insulator: exact diagonalization

inverse compressibility
6×4 lattice

Chern insulator: exact diagonalization

3×4 lattice

3×5 lattice

3×6 lattice
6×4 lattice

Chern insulator: exact diagonalization

Is there a fractional Hall effect? Other recent works

- D. N. Sheng, Z. Gu, K. Sun, and L. Sheng, Nature Comm. 2, 389 (2011)
- N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011)
- Yang-Le Wu; B. A. Bernevig, N. Regnault, arXiv:1111.1172
- S. Parameswaran, R. Roy, and S. Sondhi, arXiv:1106.4025
- B. A. Bernevig, N. Regnault arXiv:1110.4488
- M. Goerbig, Eur. Phys. J. B 85(1), 15 (2012)
- R. Shankar and G. Murthy arXiv:1108.5501

口
 Is there a FQHE when flat bands with non-zero Chern number are partially fixed?

■
 Is there a FQHE when flat bands with non-zero Chern number are partially fixed?

What about time-reversal symmetric systems?

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry

> PRB 84, 165107 (2011)
> PRB 84, 165138 (2011)
> PRL 108, 046806 (2011)

Spin quantum Hall effect - two FQHE layers

Doubled model with opposite FQHE for each spin species
B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).

Time-reversal symmetric Abelian fractional liquids

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry PRB (2011)

" $\nu=0$ " FQHE

Abelian Chern-Simons action

$$
S \equiv \frac{1}{4 \pi} \int \mathrm{~d} t \mathrm{~d}^{2} \mathbf{x} \epsilon_{\mu \nu \rho} K_{i j} a_{\mu}^{i} \partial_{\nu} a_{\rho}^{j}
$$

$$
K=\left(\begin{array}{cc}
\kappa & \Delta \\
\Delta^{\top} & -\kappa
\end{array}\right)
$$

$$
\kappa^{\top}=\kappa, \quad \Delta^{\top}=-\Delta
$$

degeneracy on torus for this subclass

$$
\begin{aligned}
\#_{\mathrm{GS}} & =\left|\operatorname{det}\left(\begin{array}{cc}
\kappa & \Delta \\
\Delta^{\top} & -\kappa
\end{array}\right)\right|=\left|\operatorname{det}\left(\begin{array}{cc}
\Delta^{\top} & -\kappa \\
\kappa & \Delta
\end{array}\right)\right| \\
& =\left[\operatorname{Pf}\left(\begin{array}{cc}
\Delta^{\top} & -\kappa \\
\kappa & \Delta
\end{array}\right)\right]^{2}=[\text { integer }]^{2}
\end{aligned}
$$

Lattice realization of time-reversal symmetric fractional topological liquids

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry PRB (2011); PRL (2011).

2 copies of flatband models, with opposite chirality for $\uparrow \downarrow$ spins
flattened Kane+Mele model

Add interactions

$$
H_{\mathrm{int}}:=U \sum_{i \in \Lambda} \rho_{i, \uparrow} \rho_{i, \downarrow}+V \sum_{\langle i j\rangle \in \Lambda}\left(\rho_{i, \uparrow} \rho_{j, \uparrow}+\rho_{i, \downarrow} \rho_{j, \downarrow}+2 \lambda \rho_{i, \uparrow} \rho_{j, \downarrow}\right)
$$

Topological insulator: 1/2 filling

$$
H:=\sum_{\boldsymbol{k} \in \mathrm{BZ}} c_{\boldsymbol{k}}^{\dagger} \mathcal{H}_{\boldsymbol{k}} c_{\boldsymbol{k}}+U \sum_{\boldsymbol{r}} \sum_{\alpha=A, B} n_{\boldsymbol{r}, \uparrow, \alpha} n_{\boldsymbol{r}, \downarrow, \alpha}
$$

1/2 filling of lower bands,

| $\uparrow \uparrow$ | \uparrow | \uparrow | \uparrow |
| :--- | :--- | :--- | :--- | 4×3 lattice, 12 particles

Topological insulator: 1/2 filling

$$
H:=\sum_{\boldsymbol{k} \in \mathrm{BZ}} c_{\boldsymbol{k}}^{\dagger} \mathcal{H}_{\boldsymbol{k}} c_{\boldsymbol{k}}+U \sum_{\boldsymbol{r}} \sum_{\alpha=A, B} n_{\boldsymbol{r}, \uparrow, \alpha} n_{\boldsymbol{r}, \downarrow, \alpha}
$$

1/2 filling of lower bands, 4×3 lattice, 12 particles
flat band
ferromagnetism

Topological insulator: 1/2 filling

$$
H:=\sum_{\boldsymbol{k} \in \mathrm{BZ}} c_{\boldsymbol{k}}^{\dagger} \mathcal{H}_{\boldsymbol{k}} c_{\boldsymbol{k}}+U \sum_{\boldsymbol{r}} \sum_{\alpha=A, B} n_{\boldsymbol{r}, \uparrow, \alpha} n_{\boldsymbol{r}, \downarrow, \alpha}
$$

1/2 filling of lower bands, 4×3 lattice, 12 particles
flat band ferromagnetism

Topological insulator: 1/2 filling

$$
H:=\sum_{\boldsymbol{k} \in \mathrm{BZ}} c_{\boldsymbol{k}}^{\dagger} \mathcal{H}_{\boldsymbol{k}} c_{\boldsymbol{k}}+U \sum_{\boldsymbol{r}} \sum_{\alpha=A, B} n_{\boldsymbol{r}, \uparrow, \alpha} n_{\boldsymbol{r}, \downarrow, \alpha}
$$

1/2 filling of lower pandr
4×3 lattice, 12 particles
flat band ferromagnetism

Topological insulator: 1/2 filling

$$
H:=\sum_{\boldsymbol{k} \in \mathrm{BZ}} c_{\boldsymbol{k}}^{\dagger} \mathcal{H}_{\boldsymbol{k}} c_{\boldsymbol{k}}+U \sum_{\boldsymbol{r}} \sum_{\alpha=A, B} n_{\boldsymbol{r}, \uparrow, \alpha} n_{\boldsymbol{r}, \downarrow, \alpha}
$$

1/2 filling of lower pande

4×3 lattice, 12 particles
flat band
ferromagnetism Spontaneous QHE

$$
\sigma_{x y}=\frac{e^{2}}{h}
$$

Topological insulator: 1/2 filling

Restoring bandwidth:
full polarization stable up to $\mathrm{W} \approx 0.7 \mathrm{U}$

Topological insulator: 2/3 filling

Topological insulator: 2/3 filling

Thursday, March 22, 2012

Topological insulator: 2/3 filling

Topological insulator: 2/3 filling

Topological insulator: 2/3 filling

spontaneous TRS breaking
spontaneous FQHE

Perspective - bulk vs. edge

Edge modes?

M. Levin and A. Stern, PRL (2009)
T. Neupert et al. PRB (2011)

$$
K=\left(\begin{array}{cccc}
+1 & +2 & 0 & 0 \\
+2 & +1 & 0 & 0 \\
0 & 0 & -1 & -2 \\
0 & 0 & -2 & -1
\end{array}\right)
$$

Perspective - bulk vs. edge

Edge modes?

M. Levin and A. Stern, PRL (2009)
T. Neupert et al. PRB (2011)

NO

Perspective - bulk vs. edge

Edge modes?

M. Levin and A. Stern, PRL (2009)
T. Neupert et al. PRB (2011)

NO

No propagating edge modes, but... fractionalized excitations in the bulk! Bulk rich ... edge poor

Perspective - bulk vs. edge

Edge modes?

M. Levin and A. Stern, PRL (2009)
T. Neupert et al. PRB (2011)

NO

No propagating edge modes, but... fractionalized excitations in the bulk! Bulk rich ... edge poor

More structure than captured by a \mathbb{Z}_{2} classification alone.

Perspective - bulk vs. edge

Edge modes?

M. Levin and A. Stern, PRL (2009)
T. Neupert et al. PRB (2011)

NO

No propagating edge modes, but... fractionalized excitations in the bulk! Bulk rich ... edge poor

More structure than captured by a \mathbb{Z}_{2} classification alone.

$3 D$

T. Neupert, L. Santos, S. Ryu C. Chamon, and C. Mudry arXiv:1202.5188

Classification of non-interacting states of matter "Periodic Table of Topological Insulators"

Symmetry				d							
AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
AII	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

TABLE I Periodic table of topological insulators and superconductors. The 10 symmetry classes are labeled using the notation of Altland and Zirnbauer (1997) (AZ) and are specified by presence or absence of \mathcal{T} symmetry Θ, particle-hole symmetry Ξ and chiral symmetry $\Pi=\Xi \Theta . \pm 1$ and 0 denotes the presence and absence of symmetry, with ± 1 specifying the value of Θ^{2} and Ξ^{2}. As a function of symmetry and space dimensionality, d, the topological classifications $\left(\mathbb{Z}, \mathbb{Z}_{2}\right.$ and 0$)$ show a regular pattern that repeats when $d \rightarrow d+8$.
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,
New J. Phys. 12, 065010 (2010)
Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686

Classification of non-interacting states of matter "Periodic Table of Topological Insulators"

Symmetry				IQHE d							
AZ	Θ	Ξ	Π	1			4	5	6	7	8
A	0	0	0	0	(\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
AII	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

TABLE I Periodic table of topological insulators and superconductors. The 10 symmetry classes are labeled using the notation of Altland and Zirnbauer (1997) (AZ) and are specified by presence or absence of \mathcal{T} symmetry Θ, particle-hole symmetry Ξ and chiral symmetry $\Pi=\Xi \Theta . \pm 1$ and 0 denotes the presence and absence of symmetry, with ± 1 specifying the value of Θ^{2} and Ξ^{2}. As a function of symmetry and space dimensionality, d, the topological classifications $\left(\mathbb{Z}, \mathbb{Z}_{2}\right.$ and 0$)$ show a regular pattern that repeats when $d \rightarrow d+8$.
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,
New J. Phys. 12, 065010 (2010)
Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686

Classification of non-interacting states of matter "Periodic Table of Topological Insulators"

Symmetry				IQHE d							
AZ	Θ	Ξ	Π	1		3	4	5	6	7	8
A	0	0	0	0	(Z)	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
AII	-1	0	0	0		\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}			\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

TABLE I Periodic table of topological insulators and superconductors. The 10 symmetry classes are labeled using the notation of Altland and Zirnbauer (1997) (AZ) and are specified by presence or absence of \mathcal{T} symmetry Θ, particle-hole symmetry Ξ and chiral symmetry $\Pi=\Xi \Theta . \pm 1$ and 0 denotes the presence and absence of symmetry, with ± 1 specifying the value of Θ^{2} and Ξ^{2}. As a function of symmetry and space dimensionality, d, the topological classifications $\left(\mathbb{Z}, \mathbb{Z}_{2}\right.$ and 0$)$ show a regular pattern that repeats when $d \rightarrow d+8$.
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,
New J. Phys. 12, 065010 (2010)
Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686

Classification of non-interacting states of matter "Periodic Table of Topological Insulators"

TABLE I Periodic table of topological insulators and superconductors. The 10 symmetry classes are labeled using the notation of Altland and Zirnbauer (1997) (AZ) and are specified by presence or absence of \mathcal{T} symmetry Θ, particle-hole symmetry Ξ and chiral symmetry $\Pi=\Xi \Theta . \pm 1$ and 0 denotes the presence and absence of symmetry, with ± 1 specifying the value of Θ^{2} and Ξ^{2}. As a function of symmetry and space dimensionality, d, the topological classifications $\left(\mathbb{Z}, \mathbb{Z}_{2}\right.$ and 0$)$ show a regular pattern that repeats when $d \rightarrow d+8$.
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) Ryu, S., A. Schnyder, A. Furusaki, A. W. W. Ludwig,
New J. Phys. 12, 065010 (2010)
Kitaev, A., 2009, AIP Conf. Proc. 1134, 22; arXiv:0901.2686

3D Lattice model

3 orbital model on the cubic lattice

$$
H_{\mathbf{k}}=\sum_{i=1}^{3} \lambda_{3+i} \sin k_{i}+\lambda_{7}\left(M-\sum_{i=1}^{3} \cos k_{i}\right)
$$

Gell-Mann matrices
flat band

3D Lattice model

3 orbital model on the cubic lattice

$$
H_{\mathbf{k}}=\underbrace{\sum_{i=1}^{3} \lambda_{3+i} \sin k_{i}+\lambda_{7}}_{i=1}\left(M-\sum_{i=1}^{3} \cos k_{i}\right)
$$

Gell-Mann matrices
flat band

$$
H_{\mathbf{k}}=\left(\begin{array}{cc}
0_{2 \times 2} & q_{\mathbf{k}} \\
q_{\mathbf{k}}^{\dagger} & 0
\end{array}\right)
$$

3D Lattice model

3 orbital model on the cubic lattice

$$
\begin{gathered}
H_{\mathbf{k}}=\sum_{i=1}^{3} \lambda_{3+i} \sin k_{i}+\lambda_{7}\left(M-\sum_{i=1}^{3} \cos k_{i}\right) \\
\theta(M)= \begin{cases}+2 \pi, & |M|<1 \\
-\pi, & 1<|M|<3 \\
0, & 3<|M|\end{cases}
\end{gathered}
$$

Non-commuting projected position operators

2D: Projection onto Landau level

$$
\begin{array}{rlr}
\widehat{\mathbf{X}} & =\widehat{\mathcal{P}}_{n} \widehat{\mathbf{R}} \widehat{\mathcal{P}}_{n} & {\left[\widehat{X}_{1}, \widehat{X}_{2}\right]=+\mathrm{i} \ell_{B}^{2}} \\
& =\widehat{\mathbf{R}}-\frac{\ell_{B}^{2}}{\hbar} \mathbf{e}_{\mathbf{3}} \times \widehat{\mathbf{\Pi}} &
\end{array}
$$

Non-commuting projected position operators

2D: Projection onto Landau level

$$
\widehat{\mathbf{X}}=\widehat{\mathcal{P}}_{n} \widehat{\mathbf{R}} \widehat{\mathcal{P}}_{n} \quad\left[\widehat{X}_{1}, \widehat{X}_{2}\right]=+\mathrm{i} \ell_{B}^{2}
$$

$$
=\widehat{\mathbf{R}}-\frac{\ell_{B}^{2}}{\hbar} \mathbf{e}_{\boldsymbol{3}} \times \widehat{\boldsymbol{\Pi}}
$$

Non-commuting projected position operators

2D: Projection onto Landau level

$$
\widehat{\mathbf{x}}=\widehat{\mathcal{P}}_{n} \hat{\mathbf{R}} \widehat{\mathcal{P}}_{n}
$$

$$
=\widehat{\mathbf{R}}-\frac{\ell_{B}^{2}}{\hbar} \mathbf{e}_{\boldsymbol{3}} \times \widehat{\boldsymbol{\Pi}}
$$

non-commuting coordinates

"fuzziness"

$$
\left[\widehat{X}_{1}, \widehat{X}_{2}\right]=+\mathrm{i} \ell_{B}^{2}
$$

Non-commuting projected position operators

2D: Coordinate transformation

$$
r_{\mu} \rightarrow f_{\mu}(\mathbf{r})
$$

$$
\left[\widehat{X}_{1}, \widehat{X}_{2}\right]=+\mathrm{i} \ell_{B}^{2}
$$

Non-commuting projected position operators

2D: Coordinate transformation

$$
\begin{aligned}
& r_{\mu} \rightarrow f_{\mu}(\mathbf{r}) \\
& \left.\left[f_{1}(\widehat{\mathbf{X}}), f_{2}(\widehat{\mathbf{X}})\right]=+\mathrm{i} \ell_{B}^{2}, \widehat{X}_{2}\right]
\end{aligned}
$$

Non-commuting projected position operators

2D: Coordinate transformation

$$
\begin{aligned}
& r_{\mu} \rightarrow f_{\mu}(\mathbf{r}) \\
& {\left[f_{1}(\widehat{\mathbf{X}}), f_{2}(\widehat{\mathbf{X}})\right]=+\mathrm{i} \ell_{B}^{2}\left\{\widehat{X}_{1}, \widehat{X}_{2}\right]}
\end{aligned}
$$

Poisson bracket $\quad\left\{f_{1}, f_{2}\right\}_{\mathrm{P}}(\mathbf{r})=\epsilon^{\mu \nu}\left(\frac{\partial \mathbf{f}_{\mathbf{1}}}{\partial \mathbf{r}_{\mu}} \frac{\partial \mathbf{f}_{\mathbf{2}}}{\partial \mathbf{r}_{\nu}}\right)$

Non-commuting projected position operators

2D: Coordinate transformation

$$
\begin{gathered}
r_{\mu} \rightarrow f_{\mu}(\mathbf{r}) \\
{\left[f_{1}(\widehat{\mathbf{X}}), f_{2}(\widehat{\mathbf{X}})\right]=+\mathrm{i} \ell_{B}^{2}\left\{f_{1}, \widehat{X}_{2}\right\}_{\mathrm{P}}(\widehat{\mathbf{X}})+\mathcal{O}\left(\ell_{B}^{4}\right)} \\
\text { Poisson bracket } \quad\left\{f_{1}, f_{2}\right\}_{\mathrm{P}}(\mathbf{r})=\epsilon^{\mu \nu}\left(\frac{\partial \ell_{B}^{2}}{\partial \mathbf{f}_{\mu}} \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{r}_{\nu}}\right)
\end{gathered}
$$

transformation preserves area \Rightarrow commutators are unchanged

Non-commuting projected position operators

3D: what would be a "pristine" extension?

$$
\begin{aligned}
& {\left[\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right] }=+\mathrm{i} \ell^{3} \\
& \text { Nambu (quantum) 3-bracket } \\
& {\left[\widehat{A}_{1}, \widehat{A}_{2}, \widehat{A}_{3}\right]=\epsilon_{i j k} \widehat{A}_{i} \widehat{A}_{j} \widehat{A}_{k} }
\end{aligned}
$$

Non-commuting projected position operators

3D: what would be a "pristine" extension?

$$
\begin{gathered}
{\left[\begin{array}{l}
\left.\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]=+\mathrm{i} \ell^{3} \\
\text { Nambu (quantum) 3-bracket } \\
\quad\left[\widehat{A}_{1}, \widehat{A}_{2}, \widehat{A}_{3}\right]=\epsilon_{i j k} \widehat{A}_{i} \widehat{A}_{j} \widehat{A}_{k}
\end{array}\right.} \\
r_{\mu} \rightarrow f_{\mu}(\mathbf{r}) \\
{\left[f_{1}(\widehat{\mathbf{X}}), f_{2}(\widehat{\mathbf{X}}), f_{2}(\widehat{\mathbf{X}})\right]=\mathrm{i} \ell^{3}\left\{f_{1}, f_{2}, f_{3}\right\}_{\mathrm{N}}(\widehat{\mathbf{X}})+\mathcal{O}\left(\ell^{5}\right)} \\
\quad\left\{f_{1}, f_{2}, f_{3}\right\}_{\mathrm{N}}(\mathbf{r})=\epsilon^{\mu \nu \lambda}\left(\frac{\partial \mathbf{f}_{1}}{\partial \mathbf{r}_{\mu}} \frac{\partial \mathbf{f}_{\mathbf{2}}}{\partial \mathbf{r}_{\nu}} \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{r}_{\lambda}}\right)(\mathbf{r})
\end{gathered}
$$

Non-commuting projected position operators

3D: what would be a "pristine" extension?

$$
\begin{gathered}
{\left[\begin{array}{l}
\left.\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]=+\mathrm{i} \ell^{3} \\
\text { Nambu (quantum) 3-bracket } \\
\quad\left[\widehat{A}_{1}, \widehat{A}_{2}, \widehat{A}_{3}\right]=\epsilon_{i j k} \widehat{A}_{i} \widehat{A}_{j} \widehat{A}_{k}
\end{array}\right.} \\
r_{\mu} \rightarrow f_{\mu}(\mathbf{r}) \\
{\left[f_{1}(\widehat{\mathbf{X}}), f_{2}(\widehat{\mathbf{X}}), f_{2}(\widehat{\mathbf{X}})\right]=\mathrm{i} \ell^{3}\left\{f_{1}, f_{2}, f_{3}\right\}_{\mathrm{N}}(\widehat{\mathbf{X}})+\mathcal{O}\left(\ell^{5}\right)} \\
\left\{f_{1}, f_{2}, f_{3}\right\}_{\mathrm{N}}(\mathbf{r})=\epsilon^{\mu \nu \lambda}\left(\frac{\partial \mathbf{f}_{1}}{\partial \mathbf{r}_{\mu}} \frac{\partial \mathbf{f}_{2}}{\partial \mathbf{r}_{\nu}} \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{r}_{\lambda}}\right)(\mathbf{r})
\end{gathered}
$$

transformation preserves volume \Rightarrow 3-brackets are unchanged

Non-commuting projected position operators

3D: non-pristine

$$
\left[\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]=+i \ell^{3}+\ldots
$$

$$
\widehat{X}_{\mu}=\int \mathrm{d}^{d} \mathbf{k} \widehat{\chi}_{\tilde{\mathbf{a}}}^{\dagger}(\mathbf{k}) \mathrm{i} \mathbf{D}_{\mu}^{\tilde{\mathbf{a}} \tilde{\mathbf{b}}}(\mathbf{k}) \widehat{\chi}_{\tilde{\mathbf{b}}}(\mathbf{k})
$$

$$
D_{\mu}(\mathbf{k})=\partial_{\mu}+\mathbf{A}_{\mu}(\mathbf{k})
$$

when $\quad \operatorname{Tr}\left[D_{\mu}, D_{\nu}\right]=V \int \mathrm{~d}^{d} \mathbf{k} \operatorname{tr} \mathbf{F}_{\mu \nu}(\mathbf{k})=\mathbf{0}$

$$
\left\langle:\left[\widehat{X}_{\mu}, \widehat{X}_{\nu}, \widehat{X}_{\rho}\right]:\right\rangle=-\mathrm{i} \operatorname{Tr}\left[D_{\mu}, D_{\nu}, D_{\rho}\right]
$$

Non-commuting projected position operators

3D: non-pristine

$$
\left\langle:\left[\widehat{X}_{\mu}, \widehat{X}_{\nu}, \widehat{X}_{\rho}\right]:\right\rangle=-\mathrm{i} \operatorname{Tr}\left[D_{\mu}, D_{\nu}, D_{\rho}\right]
$$

A. P. Polychronakos (2007)

Non-commuting projected position operators

3D: non-pristine

$$
\begin{aligned}
& \left\langle:\left[\widehat{X}_{\mu}, \widehat{X}_{\nu}, \widehat{X}_{\rho}\right]:\right\rangle=-\mathrm{i} \operatorname{Tr}\left[D_{\mu}, D_{\nu}, D_{\rho}\right] \\
& \quad \frac{1}{N_{\mathrm{p}}}\left\langle:\left[\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]:\right\rangle=\frac{12 \pi^{2} \mathrm{i}}{\bar{\rho}} \mathrm{CS}^{(3)}
\end{aligned}
$$

Non-commuting projected position operators

3D: non-pristine

$$
\begin{gathered}
\left\langle:\left[\widehat{X}_{\mu}, \widehat{X}_{\nu}, \widehat{X}_{\rho}\right]:\right\rangle=-\mathrm{i} \operatorname{Tr}\left[D_{\mu}, D_{\nu}, D_{\rho}\right] \\
\frac{1}{N_{\mathrm{p}}}\left\langle:\left[\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]:\right\rangle=\frac{12 \pi^{2} \mathrm{i}}{\bar{\rho}} \mathrm{CS}^{(3)} \\
\bar{\rho}=\frac{N_{\mathrm{p}}}{V} \xrightarrow{\text { A. P. Polychronakos (2007) }} \\
\mathrm{CS}^{(3)}=\frac{\pi}{2} \int \frac{\mathrm{~d}^{3} \mathbf{k}}{(2 \pi)^{3}} \epsilon^{i j k} \operatorname{tr}\left(A_{i} F_{j k}-\frac{2}{3} A_{i} A_{j} A_{k}\right)
\end{gathered}
$$

Non-commuting projected position operators

3D: non-pristine

$$
\begin{aligned}
\langle: & {\left.\left[\widehat{X}_{\mu}, \widehat{X}_{\nu}, \widehat{X}_{\rho}\right]:\right\rangle=-\mathrm{i} \operatorname{Tr}\left[D_{\mu}, D_{\nu}, D_{\rho}\right] } \\
& \frac{1}{N_{\mathrm{p}}}\left\langle:\left[\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]:\right\rangle=\frac{12 \pi^{2} \mathrm{i}}{\bar{\rho}} \mathrm{CS}^{(3)} \\
& \frac{1}{N_{\mathrm{p}}}\left\langle:\left[\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]:\right\rangle=+\mathrm{i} \ell^{3}
\end{aligned}
$$

Non-commuting projected position operators

3D: fuzzy coordinates

$$
\frac{1}{N_{\mathrm{p}}}\left\langle:\left[\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]:\right\rangle=+\mathrm{i} \ell^{3}
$$

Non-commuting projected position operators

3D: fuzzy coordinates

$$
\frac{1}{N_{\mathrm{p}}}\left\langle:\left[\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]:\right\rangle=+\mathrm{i} \ell^{3}
$$

Non-commuting projected position operators

3D: fuzzy coordinates

$$
\frac{1}{N_{\mathrm{p}}}\left\langle:\left[\widehat{X}_{1}, \widehat{X}_{2}, \widehat{X}_{3}\right]:\right\rangle=+\mathrm{i} \ell^{3}
$$

Summary

It is possible to have dispersionless bands (flat bands) that are isolated from all others by an energy gap.

The isolated flat bands can be non-trivial in the sense of having a non-zero Chern number, and thus sustain an IQHE when fully occupied.

When partially filled, electron-electron interactions can lead to the FQHE and other topological phases in time-reversal invariant systems.

Topological Hubbard models have to ferromagnetic ground states: symmetry breaking simultaneously with IQHE or FQHE.

Fractional TI in 3D: non-commuting coordinates

