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� Enhancement of interatomic interactions by electric field induced resonant 
energy transfer (RET)

� Determining unknown atomic energy levels by dc field induced RET spectra

� Using ac field induced RET for energy level determination where dc field 
can not be used

� RET can be utilized in the implementation of dipole blockade
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Objective

Motivations

A + A ! B + C
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Summary of the materials to be discussed

� Rydberg atoms 

� Experimental methodology

� Magneto-Optical Trap (MOT), Selective Field Ionization (SFI)

� Laser frequency stabilization

� Dipole-Dipole interactions, RET

� dc electric-field-induced RET

� Estimation of g series quantum defect 

� Observation ofac electric-field-induced RET
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Rydberg atoms

� loosely bound electron circling ionic core.  

Ionization continuum

Infinitely 
many bound 
states

� these states have long lifetimes (eg. 17p of Na: 50 µs ).

� properties scale with n and can be exaggerated.

for Na

ionization potential

quantum defect 

Rydberg constant (13.5 eV)
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Experimental Methodology

� Form cold Rb atoms in a MOT for studies

betweenstationary atom

� 1 mm3, 300µK , Rydberg atoms: 107 cm-3

� Rydberg atom excitation using 480nm

frequency doubled Ti:sapphire laser

� Measurement and compensation of stray E and B fields using mwave transitions

between Rydberg states

� Do experiment …

� Verify excitation using SFI technique

� 10 Hz repetition rate
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Selective Field Ionization (SFI) detection of Rydberg atoms
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Rydberg Atom Excitation

Energy
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~ 780 nm
Cooling & trapping 
transitions (Diode Laser)

~ 480 nm  

Frequency doubled 
Ti:sapphire laser
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46d

nd
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Summary of the materials to be discussed
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� Dipole-Dipole interactions, RET

� dc electric-field-induced RET

� Estimation of g series quantum defect 

� Observation of ac electric-field-induced RET



� Stabilize lasers at frequencies where direct locking to a 

reference line is not possible

� High resolution optical spectroscopy for laser cooled 

Rydberg atom excitation.

Optical Transfer Cavity Stabilization using Tunable Sidebands of RF 
Current-Modulated Injection-Locked Diode Lasers

Motivation

Objective



Review / Alternative approaches

� Absolute frequency reference (Barger 1969)

� Beat note locking

� Practical up to a certain frequency 
difference

feedback

ref.
laser

PDtrgt.
laser

feedback

ref.
laser

trgt.
laser

TC

PC

� Scanning transfer cavity (TC) (Lindsay 1991, 

Rossi 2002)

� Scanning rate limits the maximum error 
correction

� Sensitive to low frequency vibrations 

� Complexity of the fringe comparison
ref.
laser

trgt.
laser

TC

feedback

AOM
(EOM)� Stabilized TC (Burghardt 1979, Plusquellic 1996)

� Frequency shift using EOM or AOM



A general frequency stabilization technique

� Fabry--Perot TC stabilized using a tunable sideband 

from a current modulated injection locked diode laser. 

� Frequency shifts without using AOMs or EOMs. 

� Not limited to certain wavelengths

� Tuning frequency with  RF precision.
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Experimental setup :
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R. Kowalski et al., 
Rev. Sci. Instrum. 
72, 2532 (2001).

fm
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Rydberg atom excitation (85Rb)

Autler –Townes splitting :    B. K. Teo et al.,  Phys. Rev. A. 68, 053407 (2003).
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Frequency stability

� Frequency fluctuation of the 

target laser (Ti:sapphire, 960 nm)

� (a) unlocked 140 MHz

� (b) locked   < 0.25 MHz 
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� Not limited to certain wavelengths

� Tuning frequency with  RF 

precision.

� Frequency shifts without using 

AOMs or EOMs.
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Summary of the materials to be discussed

� Rydberg atoms 

� Experimental methodology

� Magneto-Optical Trap (MOT), Selective Field Ionization (SFI)

� Laser frequency stabilization

� Dipole-Dipole interactions, RET

� dc electric-field-induced RET

� Estimation of g series quantum defect 

� Observation of ac electric-field-induced RET



• P. Filipovicz et al., Optica Acta, 32, 1105 (1985)

Properties of Rydberg atoms

- 3

n¤ = n ¡ ±
l



� dipole-dipole interaction strong for Rydberg states -- even 

over long distances.

� atoms temporarily excited to Rydberg states strongly interact 

due to dipole-dipole interaction -- but don’t interact when in 

ground state.
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Electric Dipole-Dipole Interactions between Rydberg Atoms



Resonant Energy Transfer (RET) through dipole-dipole interactions

A + A ! B + CA + A ! B + C
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Summary of the materials to be discussed
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Resonance condition may be achieved using Stark effect:
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Achieving resonance condition in Rb

Rb Stark map - energies relative to 44d5/2

44d
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+ 44d
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! 42f
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3=2
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Mismatch as a function of n
Consider the process:

Energies determined using quantum defects from: 

J. N. Han et al., PRA 74, 054502 (2006); W. H. Li et al., PRA 67, 052502 (2003)

Energy shifts of 
this magnitude 
can be easily 

obtained using the 
acor dcStark 
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Observation of dc field induced RET at n = 44

k = l > 3
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Observation of dc field induced RET at n = 32 
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Resonant electric fields can be used to determine energy levels

known energies unknown!!
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! 34p
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±
g
(n = 30) = 0:00405(6)
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Lower n by 1 and process cannot be tuned into resonance
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n = 43n = 44



ω gives flexibility in shift direction!
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Summary of the materials to be discussed

� Rydberg atoms 

� Experimental methodology

� Magneto-Optical Trap (MOT), Selective Field Ionization (SFI)

� Laser frequency stabilization

� Dipole-Dipole interactions, RET

� dc electric-field-induced RET

� Estimation of g series quantum defect 

� Observation of ac electric-field-induced RET
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Observation of acfield induced RET at n = 43

41g9/2

41f7/2

1.356 GHz

43d
5=2
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+ 41f
5=2;7=2
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Observation of acfield induced RET at high frequency

Many different magnetic sublevels possible, but only blue lines are “allowed”

More complicated: 
All states involved 
shift significantly

Calibrated using 
the 43d5/2 to 
45p3/2 transition

43d
5=2

+ 43d
5=2

! 45p
3=2

+ 41f
5=2;7=2
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Summary

� Developed a general technique for laser frequency stabilization at 

arbitrary wavelengths

� Determined unknown energy levels usingdc field induced RET

� Demonstrated ac field induced RET at two different frequencies in Rb

� ac fields can be used in some situations where dc fields cannot

� Using a microwave, one could turn interactions on and off quickly 

(due to modulation capabilities of the source)
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acfield induced RET vs. dc field induced RET
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� Study the interaction and dynamics of the transitionally cold Rydberg

atoms, by controlling and minimizing the dephasing processes.

� Identify reversible and irreversible dephasing processesin the study of

electric dipole-dipole interactions between cold Rydbergatoms(1).

� Diagnose electric field inhomogeneity in Rydberg atoms’ surface

interactions due to patch fields.

� Maintain the internal coherence of a single trapped Rydbergatom(2).

Motivations

Objectives

1)  K. Afrousheh, et al, Phys. Rev. Lett., 93, pp. 233001 (2004).  2) P. Hyafil, et al,Phys. Rev. Lett., 93, 103001 (2004)

Observation of Echo effect using cold Rydberg atoms in a  magnetic field 
inhomogeneity
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Geometrical representation of the Spin echo:
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� Spin Echo technique in NMR

� Magnetization

� Rydberg atoms Echo effect

Cold Rydberg atoms’ echo effect in correspondence to 
Spin echo technique
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Geometrical representation of the Spin echo:
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Rabi Oscillation on 34s5/2-34p 5/2 one-Photon Microwave Transition
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� Two-photon transitions between Rydberg states with the same gJ factors show 
negligible broadening in a MOT.

� E.g.,

Rabi Oscillation on 32d5/2-33d 5/2 Two-Photon Microwave Transition
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Can an acfield be used?

?

ac frequencies relative to:

(top three)

(bottom three)

Conclusion: Should be able to make: 

resonant with a dressing field at 1.356 GHz!
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Field strength at this frequency is calibrated using 2-photon probe shifts
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AC dressing field power calibration
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Comparison with theory

� Calculated and experimental field amplitude agree well at ~ 3.7V/m!
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vdW and resonant dipole-dipole interaction strengths 

� plot thresholds for observation of shifts of 1 and 10 MHz

� between 1 and 10 mm, threshold n differs by factor of 3.
� advantages of lower n (resonant interaction):

� easier to make transitions from ground state (n -3).

� less sensitivity to external perturbations (n 7).

� disadvantages of van der Waals (higher n):

� 1/R3 is longer range -- multi-body effects more important.



ground state

Ryd. state

1 Ryd. atom 2 Ryd. atoms

Dipole-dipole interaction ‘blocks’ excitation 
of 2 or more Rydberg atoms

dipole blockade
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Verify the stability of the target laser
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� The tuning accuracy and the drift 

behavior of the frequency locked 

target laser is characterized 

using Rydberg atom excitation in 

a 85Rb magneto-optical trap 

(MOT)



Target laser stability depends on the stability of reference laser

� Polarization Spectroscopy 

locking [1]

� Reference laser stability is 

characterized by another laser 

which is locked using 

sauturated absorption locking 

by dither/third harmonic lock-

in detection [2]

[1] C.P. Pearman et al.,  J. Phys. B., 35, 5141 (2002)
[2] Jun Ye, Steve Swartz, Peter Jungner,* and John L. Hall , Opt. Lett. 21, 1280 (1996).
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Summary and Future work

� A general technique for laser frequency stabilization at an arbitrary wavelength 

with frequency stability on the order of 1MHz/hr.

� Involves equipment and techniques commonly used in laser cooling and 

trapping laboratories.

� Does not require special modulators and drivers.

� The frequency of the target laser can be tuned with RF precision.

……….

� Evacuate the cavity to minimize environmental effects.

� Improve the stability of the reference laser.



Ti:Sapphire Ring Laser – MBR110

Reference Cavity

Pump

PZT

Photodiodes

Etalon Brewster Plates

BRF
OD

Control Box

Doubler – MBD

Photo-
diodes

λ/2
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Resonant Cavity

Rydberg atom excitation laser, target laser

To MOT

� 960nm commercial ring 

Ti:sapphire laser.

� Frequency doubler, 

external ring resonator




