GEM * STAR

Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor

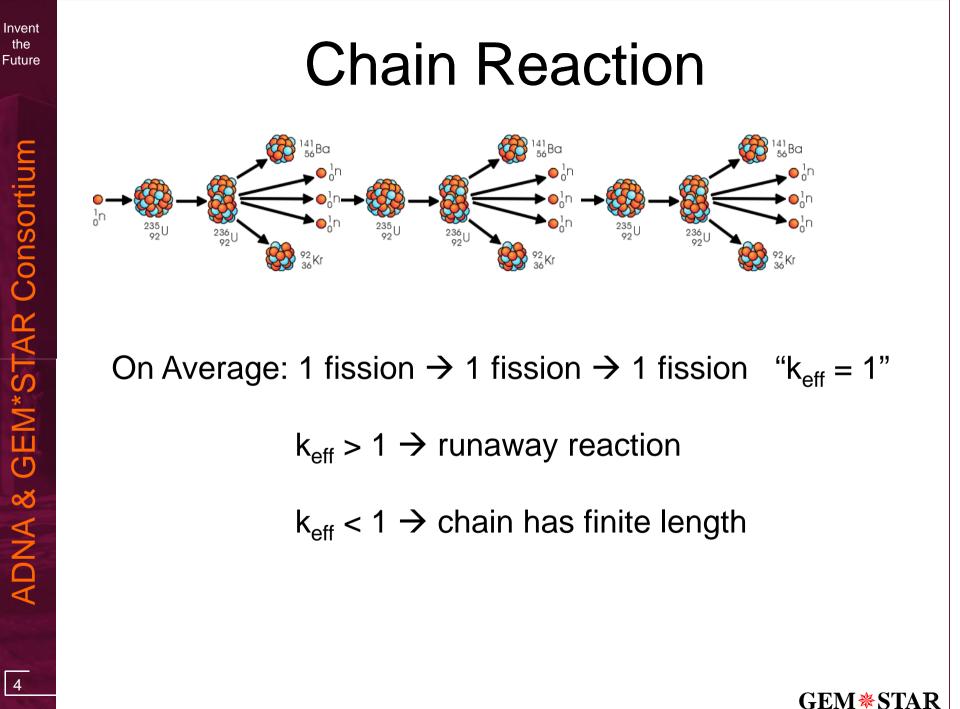
R. Bruce Vogelaar Virginia Tech

November 5, 2010 4:00 PM, Room 204 Physics Building University of Virginia Physics Colloquium

1

Recent Developments

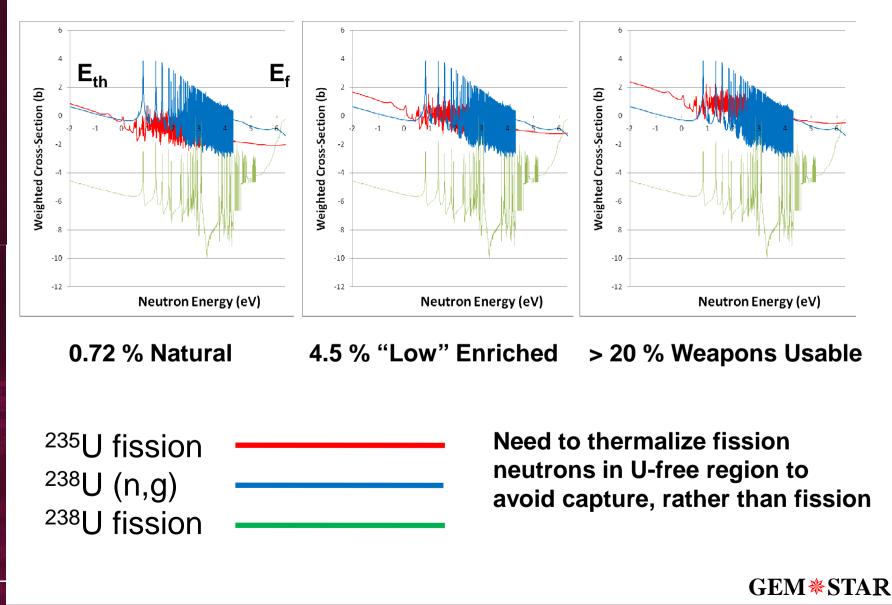

1st International Workshop on Accelerator Driven Subcritical Systems and Th Utilization


(Virginia Tech and Jefferson Laboratory, Sept 27-29, 2010)

- DOE Report
 - Finding #14: Technology is sufficiently well developed to meet the requirements of an ADS demonstration facility; some development is required for demonstrating and increasing overall system reliability.

• GEM*STAR Consortium formed (VT, UVa, VCU, JLab, others?)

- ADNA's reactor design is well matched to existing accelerator technology. A demonstration facility is being pursued in the near term. GEM*STAR portents significant new research avenues.
- India's Nuclear Energy Program
 - The use of Thorium in their program would be significantly enhanced by utilization of accelerators.



Consortium

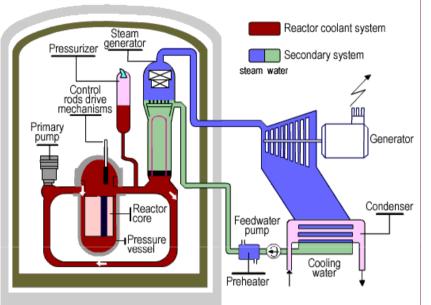
GEM*STAR

Sustaining a chain reaction

ADNA &

Possible Fuels

99	Es237 0.121s	Es238 0.975	Es239 0.1965	Es240	Es241	Es242	Es243	Es244 375	Es245	Es246	Es247 4.55m	Es248	Es249	Es250 8.6h	Es251
98	Cf236 0.1365	Cf237 2.15	Gf238	Cf239 395	Cf240	Cf241 3.78m	Cf242 3.49m	Cf243	Cf244 19.4m	Cf245 46.3m	Cf246	Cf247 3.11b	Cf248 333.5d	Cf249 350.6y	Cf250
97	Bk235 10.65	Bk236 22.15	Bk237 30.45	Bk238 2.4m	Bk239 1.63m	Bk240 4.8m	Bk241 4.6m	Bk242	Bk243 4.5h	Bk244 4.35h	Bk245 4.94d	Bk246	Bk247 1380y	Bk248	Bk249 320d
96	Cm234 515	Cm235 1.27m	Cm236 2.02m	Cm237 3.98m	Cm238	Cm239 2.9h	Cm240 27d	Cm241 32.8d	Cm242 162.8d	Cm243 29.19	Cm244 18.19	Cm245 8500y	Cm246 4730y	Cm247 1.56e+07y	Cm248 3.4e+05y
95	Am233 3.2m	Am234 2.32m	Am235	Am236 3.6m	Am237	Am238	Am239	Am240	Am241 432.2y	Am242	Am243 7370y	Am244	Am245 2.05h	Am246 ^{39m}	Am247
94	Pu232	Pu233 20.9m	Pu234 8.8h	Pu235	Pu236 2.858y	Pu237 45.2d	Pu238	Pu239	40240	Pu241 14.35y	Pu242 3. 73e+05	Pu243	Pu244 8.08e+07	Pu245	Pu246
93	Np231 48.8m	Np232	Np233 36.2m	Np234	Np235 1.084y	Np236	Np237 / 2.14e+060	Np238	Np299 2.3560	Np240	Np241 13.9m	Np242 5.5m	Np243 1.85m	Np244 2.29m	Np245 50.3s
92	U 230 20.8d	U 231 4.2d	U 232	U 233 1.59e+05	J 234	U 235 0.72	236 .34e+07,	U 237 6.75d	U 238 99.2745	239 23.45m	U 240	U 241 18.5m	U 242 16.8m	U 243 3.18m	U 244 25.8s
91	Pa229	Pa230	Pa231 3.28e+04y	Pa232	Pa200 26.97d	Pa234	Pa235	Pa236	Pa237 8.7m	Pa238	Pa239	Pa24() 26.65	Pa241 17.3≤	Pa242	Pa243 4.22≤
90	Th228 1.913y	Th229 7880y	Th230 7.54e+04y	Th231	Th232	111283 21.83m	Th234	Th235	Th236	Th237 4.7m	Th238 9.4m	Th239 33.1s	Th240	Th241 8.175	Th242 2.325
89	Ac227	Ac228 6.15h	Ac229	Ac230 2.03m	Ac231 7.5m	Ac232	Ac233 2.42m	Ac234 445	Ac235 18.1≤	Ac236 5.55s	Ac237 7.57≲	Ac238 3.035	Ac239	Ac240	
88	Ra226 1600y	Ra227 42.2m	Ra228	Ra229	Ra230	Ra231	Ra232	Ra233 305	Ra234 305	Ra235 9.65s	Ra236 7.185	Ra237 4.175			
87	Fr225	Fr226	Fr227	Fr228	Fr229 50.25	Fr230	Fr231 17.5s	Fr232 5.5s	Fr233 3.925	Fr234 2.015	Fr235 1.885				
86	Rn224	Rn225 4.5m	Rn226	Rn227 22.5s	Rn228	Rn229 ₁₄.₃₅	Rn23() 6.665	Rn231 5.41s	Rn232 3.43≤						
85	At223	At224 10.75	At225 16.25	At226 6.42s	At227 7.15s	At228 5.56s	At229 2.635								
84	Po222 9.3m	Po223 2.87m	Po224 1.56m	Po225 20.45	Po226 10.25			"F	Rrص	ചപ	ריי∠ר	ros	octi	ons	
83	Bi221 5.42s	Bi222 2.095	Bi223	Bi224 0.9935				L		CU		100)
													G	EM≉	STAR


ADNA & GEM*STAR Consortium

Invent the Future

Classic (LWR) Operation

Water Moderation: enriched ²³⁵U fuel

- Solid fuel assembly in cladding
- During operation K_{eff} is kept at 1.0
- Uses negative feedback
 - Prompt –vs– delayed critical
 - Doppler broadening
 - Thermal expansion
- Build up of Fission Products poisons chain reaction, so use:
 - Excess fuel loaded per fueling
 - add 'burnable/removable' neutron poisons to reduce reactivity back to k_{eff}=1
 - only 0.5% of energy in mined uranium gets used

Pressurized Water Reactor (AREVA)

Principle Concerns

> Waste

Iong-lived fission products and actinides

- bury in Yucca Mountain? (now cancelled!)
- \succ burn with accelerators?
- burn in next generation reactors?
- store on site...current default

Weapons Proliferation

- > enrichment:
 - \geq enrich ²³⁵U to ~5%
 - (note: >20% enrichment can be used for weapons)

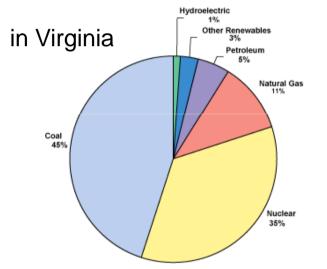
\succ reprocessing:

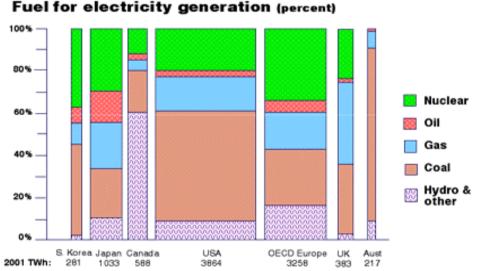
- remove minor actinides and fission products (neutron poisons)
- > proliferation resistance primarily administrative
- halted by Carter due to proliferation concerns; forcing one-pass fuel use + Yucca Mountain Repository

 - (note: ~300,000 kg of weapons grade Pu had been produced by earlier 'Purex' reprocessing, but only ~5 kg is needed for a bomb)

> Safety

- positive void coefficient: Chernobyl (not possible most places)
- decay heat: Three Mile Island
- core inventory of volatile radioactivity

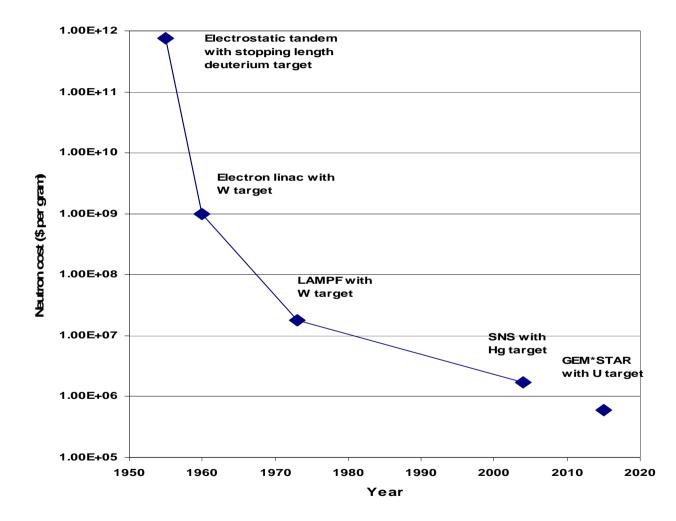



Invent

the Future

Trends in Global Energy Sources

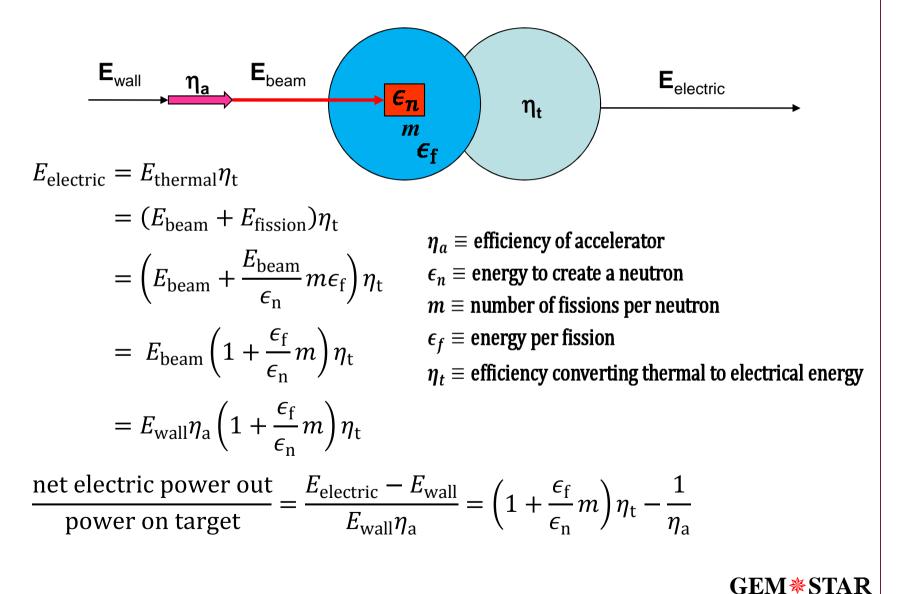
nuclear energy accounts for 17% of global electricity production



Width of each bar is indicative of power generated (gross production) Source: OECD/EA 2003, Energy Balances of OECD Countries 2001.

"At least 40 developing countries have recently approached the U.N. to signal interest in starting nuclear power programs" Joby Warrick, **Washington Post**, May 12, 2008

However, the cost of neutrons has dropped dramatically, enabling another approach...



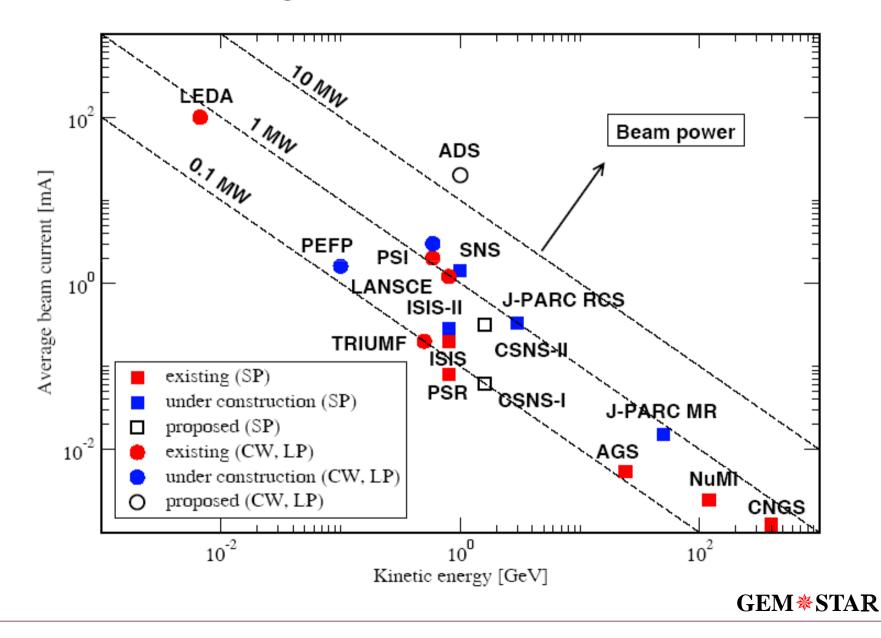
~40 grams of neutrons will produce 1GWe for one year

GEM[∗]STAR

10

Proton Driven Sub-Critical System

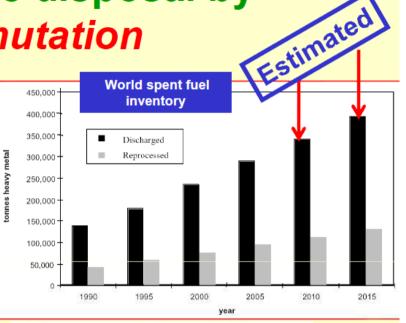
$$G = \frac{\text{net electric power out}}{\text{power on target}} = \left(1 + \frac{\epsilon_{f}}{\epsilon_{n}}m\right)\eta_{t} - \frac{1}{\eta_{a}}$$

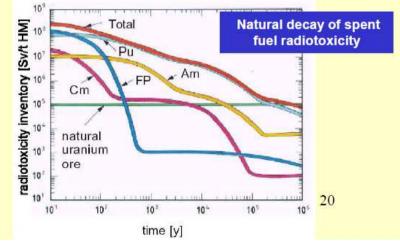

Reference parameters:

- $\epsilon_{\rm f}$ 200 MeV / fission
- ϵ_n 19 MeV / neutron (for 1 GeV protons on Uranium)
- *m* 15 fissions / neutron
- η_t 44% thermal to electric conversion
- η_a 20% accelerator efficiency

G = 65 (ie: $1MW_{target} \rightarrow 65 MW_{e}$ net output) note: a 10% accelerator efficiency only lowers this to 60

GEM*STAR


Existing Proton Beam Power



Nuclear waste disposal by Transmutation

- Accumulation of spent fuel: a global issue.
- Spent fuel requires > 100,000 years to decay.
- Transuranic elements

 (<u>TRUs</u>: Np, Pu, Am & Cm) + a few long-lived fission products (FPs): decay very slowly.
- Bulk of FPs decay to safe disposal levels in 3-5 centuries.
- If all TRUs transmuted into FPs by fission: bulk of FPs decay very fast, & it generates electricity too...!

GEM*STAR

Typical arguments given for accelerators.

ADS Technology Readiness Assessment

		Transmutation Demonstration	Industrial-Scale Transmutation	Power Generation
Front-End System	Performance			
	Reliability			
Accelerating System	RF Structure Development and Performance			
	Linac Cost Optimization			
	Reliability			
RF Plant	Performance			
	Cost Optimization			
	Reliability			
Beam Delivery	Performance			
Target Systems	Performance			
	Reliability			
Instrumentation and Control	Performance			
Beam Dynamics	Emittance/halo growth/beamloss			
	Lattice design			
Reliability	Rapid SCL Fault Recovery			
	System Reliability Engineering Analysis			

Green: "ready", Yellow: "may be ready, but demonstration or further analysis is required", Red: "more development is

15

🛟 Fermilab

Path (and funding) thus seems clear...however:

- DOE NE Report to Congress, April 2010, "Nuclear Energy Research and Development Roadmap" does not include the word 'accelerator' even once.
- DOE Science (HEP & NP) ADS Report (September 17, 2010)
 - Finding #2: Accelerator-driven sub-critical systems offer the potential for safely burning fuels which are difficult to incorporate in critical systems, for example fuel without uranium or thorium. [WHY not U ???]
 - Finding #3: Accelerator driven subcritical systems can be utilized to efficiently burn minor actinide waste.
 - Finding #4: Accelerator driven subcritical systems can be utilized to generate power from thorium-based fuels
- MIT Energy Initiative, 3 year study (presented by Ernest Moniz at CSIS, September 16, 2010)
 - 100 year horizon, no new direction, yet continue DOE-NE funding at \$1B/yr
- DOE NE representative at workshop, said DOE NE was thinking about an ADS demonstration in 2050. (ie, when I'm 90 ^(a))

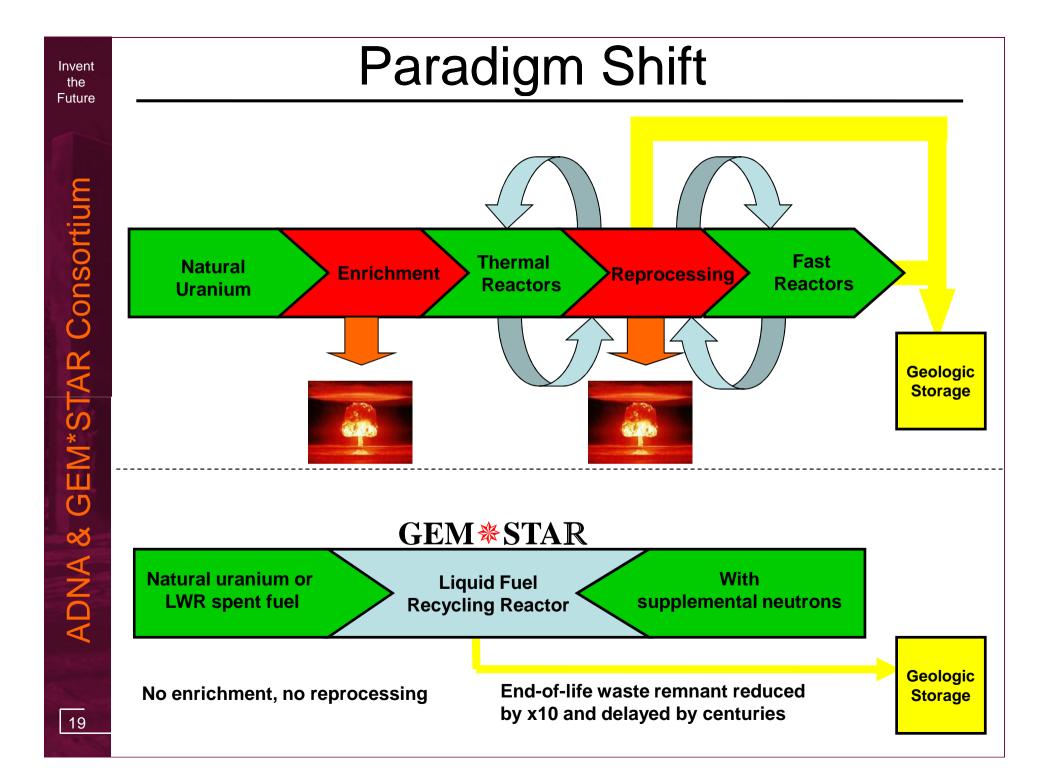
Statements (or lack thereof) based on outdated criteria, permitting modest R&D but deferring ADS for power to distant future.

Table 1: Range of Parameters for Accelerator Driven Systems for four missionsdescribed in this whitepaper

	Transmutation	Industrial	Industrial Scale	Industrial Scale Power		
	Demonstration	Scale	Power Generation	Generation without		
		Transmutation	with Energy Storage	Energy Storage		
Beam Power	1-2 MW	10-75 MW	10-75 MW	10-75 MW		
Beam Energy	0.5-3 GeV	1-2 GeV	1-2 GeV	1-2 GeV		
Beam trips (t > 5 min)	< 50/year	< 50/year	< 50/year	< 3/year		
Availability	> 50%	> 70%	> 80%	> 85%		

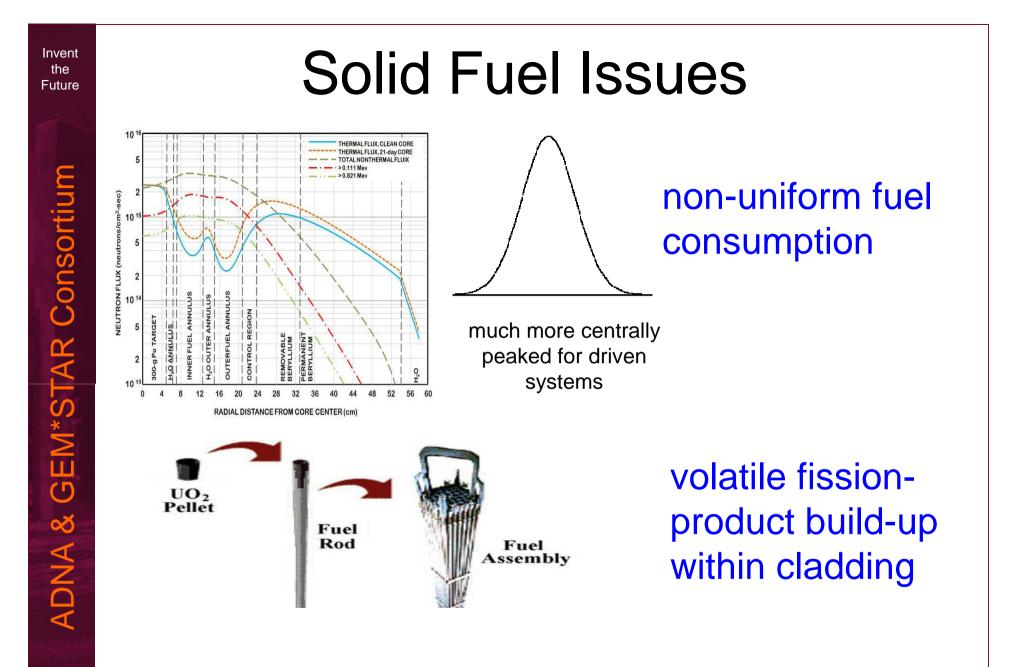
...helps motivate "Intensity Frontier" (ie: **Project X** at **Fermilab)**; but higher efficiency via higher-power beams is not a requirement, and \$100's of millions are going into solar and wind which have *far* greater outages.

DOE-NE: "It takes about 20 years to validate any new fuel system, so 2050 is the earliest one might imagine for ADS."


...based on input from solid-fuel manufacturers; but consider how this might change if a new system *actually* addressed waste, proliferation, LWR spent fuel usage, and safety (thus becoming politically, publicly, and financially desirable).

Capitalize on these first opportunities, but need to go much further.

create true energy solutions for the needs of today

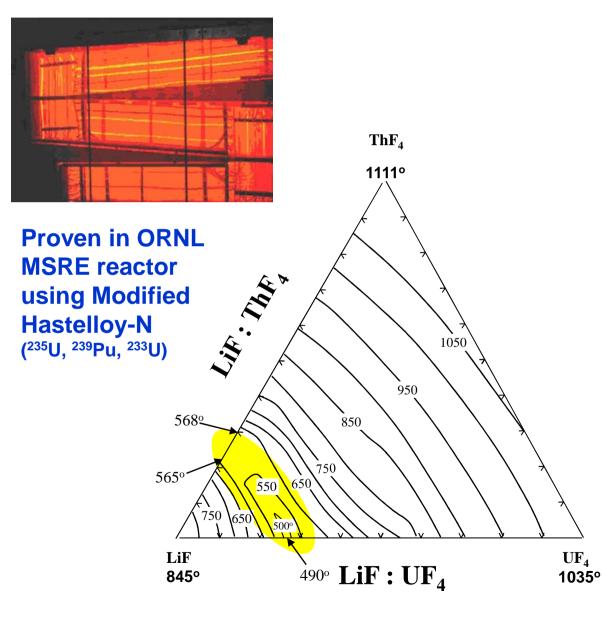

Recall that for a spallation target:

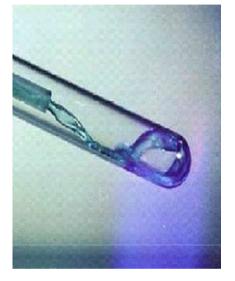
$$G = \frac{\text{net electric power out}}{\text{power on target}} \approx 4.6m - \frac{1}{\eta_a}$$

Design system to sustain large *m* (fissions per neutron), limiting the need to maximize η_a (accelerator efficiency)

- **Uranium fuel** (*un-reprocessed* LWR spent fuel is actually better)
- molten salt eutectic
- improved neutron utilization

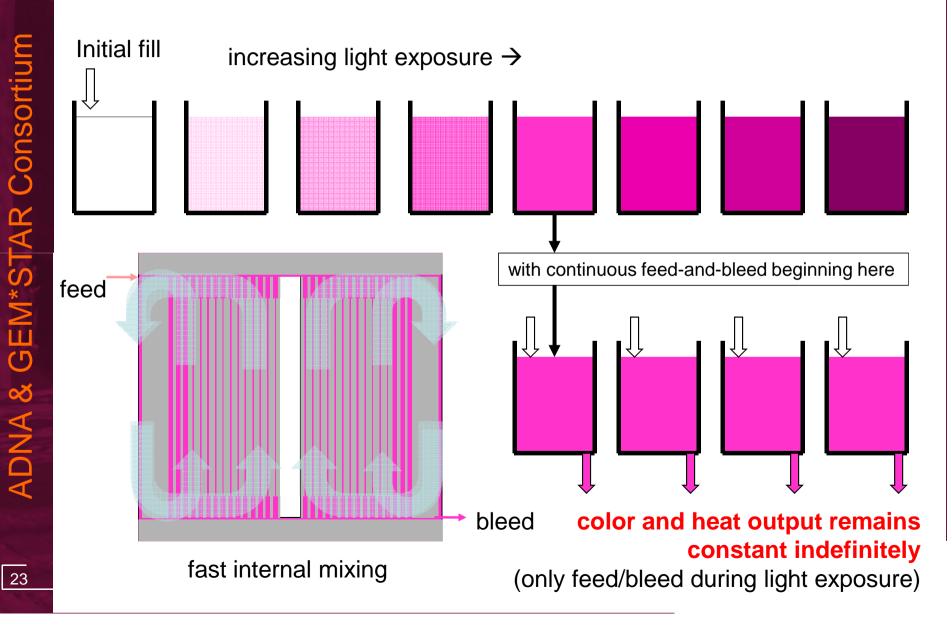
This is what the GEM*STAR project achieves, resulting in multiple advantages over existing (or planned) nuclear energy systems.




thermal shock due to beam trips

21

Molten Salt Eutectic Fuel



Uranium or Thorium fluorides form eutectic mixture with ⁷LiF salt.

High boiling point → low vapor pressure

consider a clear liquid which releases heat when exposed to light, eventually turning a dark purple

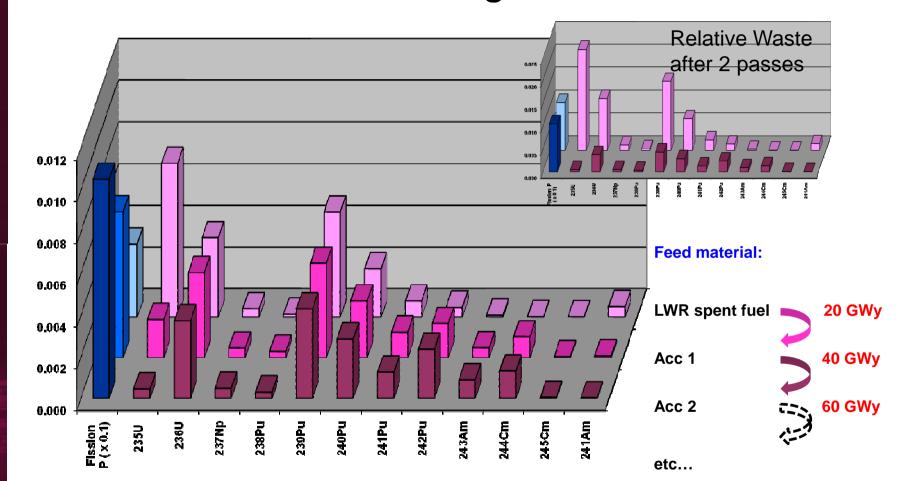
Invent the

Future

Liquid fuel enables operation with constant and uniform isotope fractions including fission products

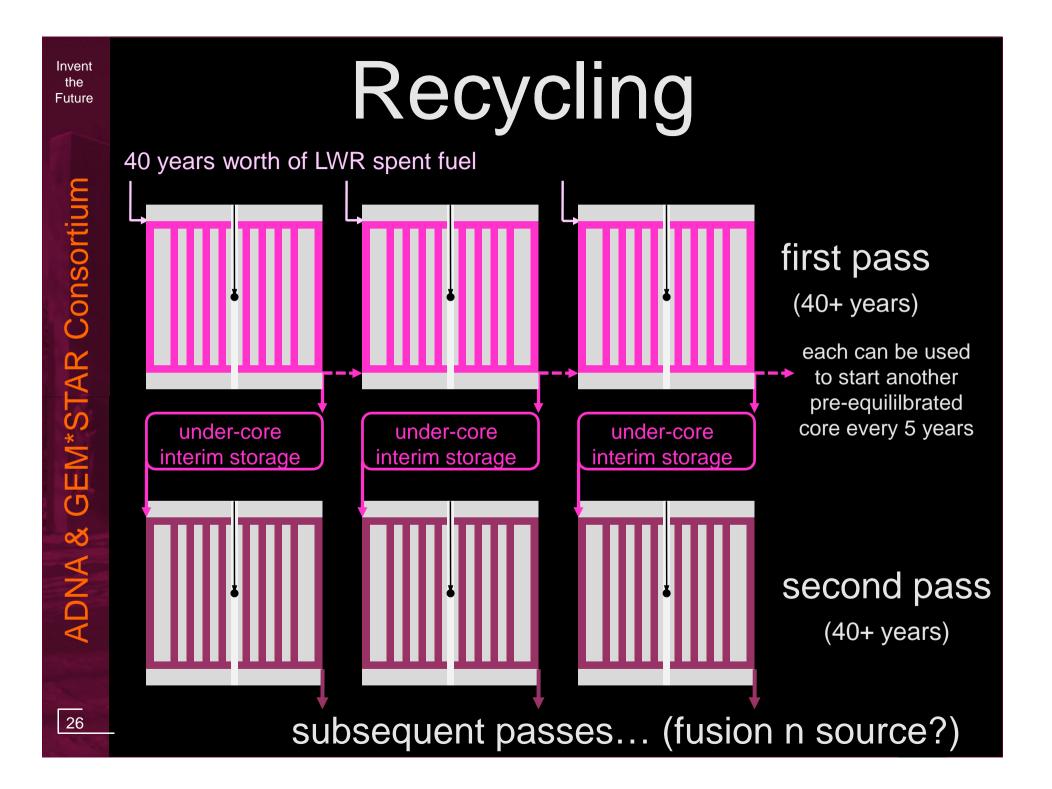
consider isotope N_1 present in molten-salt feed:

 $\begin{array}{ll} & \textit{feed} & \textit{absorption} & \textit{overflow} \\ dN_1/dt &= F(v/V) - N_1 \varphi \ \sigma_{a1} - N_1(v/V) \\ & \text{define neutron fluence: } \mathcal{F} = \phi(V/v); \ \text{then in equilibrium } dN_1/dt = 0 \\ N_1 &= F \ / \ [1 + \mathcal{F} \ \sigma_{a1}] \\ & \text{and its } n_{\text{capture}} \ \text{and } \beta_{\text{decay}} \ \text{daughters are given by} \end{array}$


$$N_i = N_1 \prod_{j=2,i} \left\{ \mathcal{F} \sigma_{c(j-1)} / [1 + \mathcal{F} \sigma_{aj}] \right\} \qquad i \ge 2$$

do this for all actinides present in molten-salt feed and add together the results

note: feed rate is determined by power extracted


extracts many times more fission energy, without additional long-lived actinides

major reduction and deferral of waste

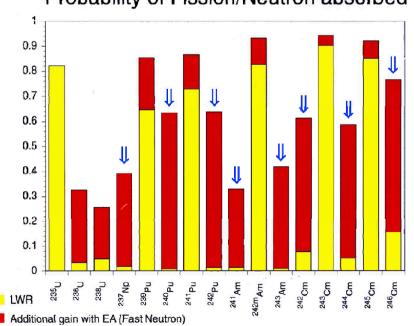
GEM*STAR

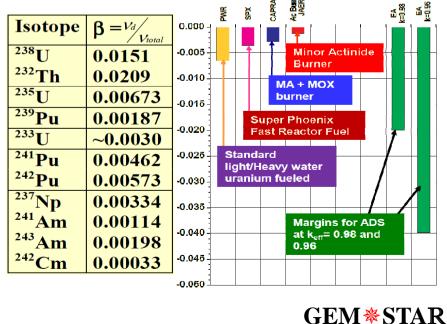
25

ADNA & GEM*STAR Consortium

27

For 50 years, and even today, people argue for fast-spectrum systems.


Why?


Faster burn-up of heavy actinides.

BUT:

- smaller difference between delayed and prompt criticality.
- higher energy-density cores (to keep neutrons 'fast')

(meaning LOCA accidents much more difficult; translate → higher cost)
 •already an argument for sub-critical system, but if you don't want reprocessing, fission products will quickly create problems.

Probability of Fission/Neutron absorbed

ADNA & GEM*STAR Consortium

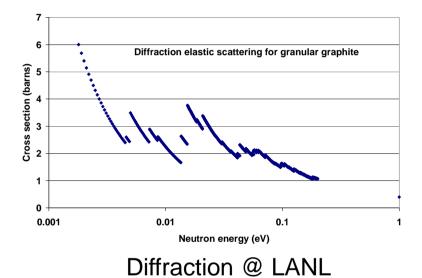
Thermal Spectrum 0.01 – 0.2 eV

highest tolerance for fission products:

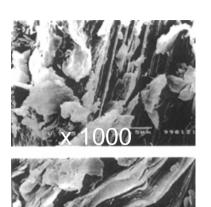
• spin structure and resonance spacing reduces capture cross-section at thermal energies:

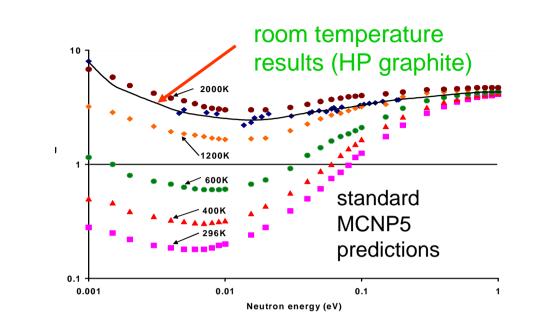
 $\frac{\sigma - fission (^{239}Pu)}{\sigma - capture (f.p.)}$ ~ 100 (vs ~ 10 @ 50 keV)

- ¹⁵¹Sm (transmuted rapidly to low σ_c nuclei)
- ¹³⁵Xe (continuously removed as a gas)


⇒ more than compensates for slower fission of heavy actinides (which are burned anyway) GEM*STAR

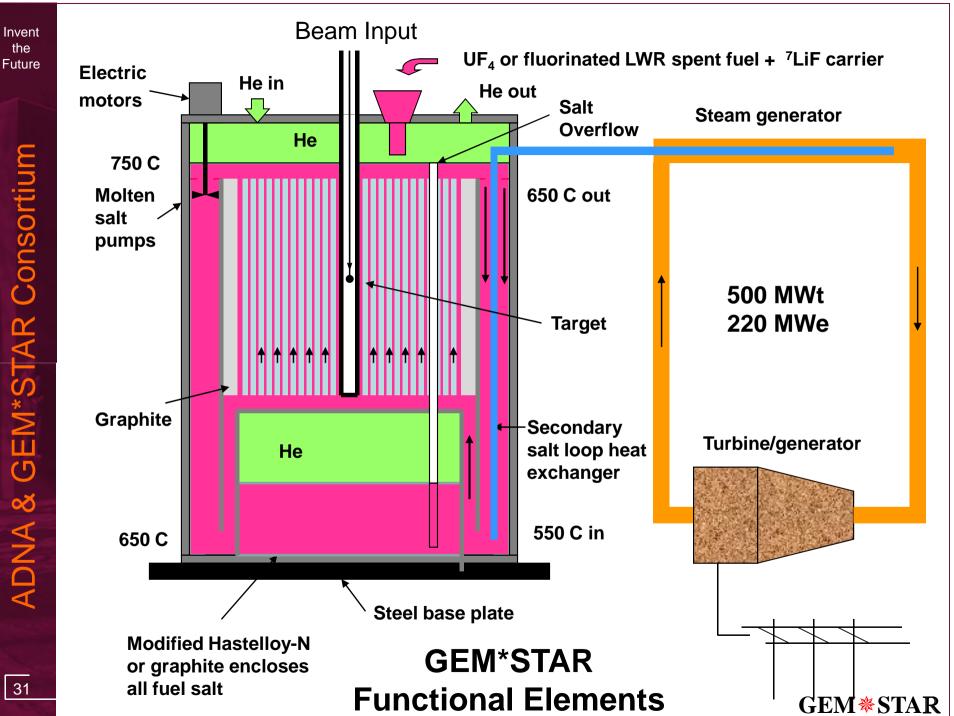
Invent the Future


New Graphite Results (ADNA)



Diffusion/Absorption @ Duke

"Measurements of Thermal Neutron Diffraction and Inelastic Scattering in Reactor-Grade Graphite" *Nuclear Science and Engineering* Vol. 159 · No. 2 · June 2008 "Reducing Parasitic Thermal Neutron Absorption in Graphite Reactors by 30%" *Nuclear Science and Engineering* Vol. 161, No. 1, January 2009



Discovered **and measured** a commercial graphite source with:

- 24% increase in room temperature thermal diffusion length ('HP' manufacturing process creates distorted crystals reducing coherent scattering)
- boron contamination less than 2 parts in 10⁷

 \Rightarrow significant reduction in parasitic neutron absorption

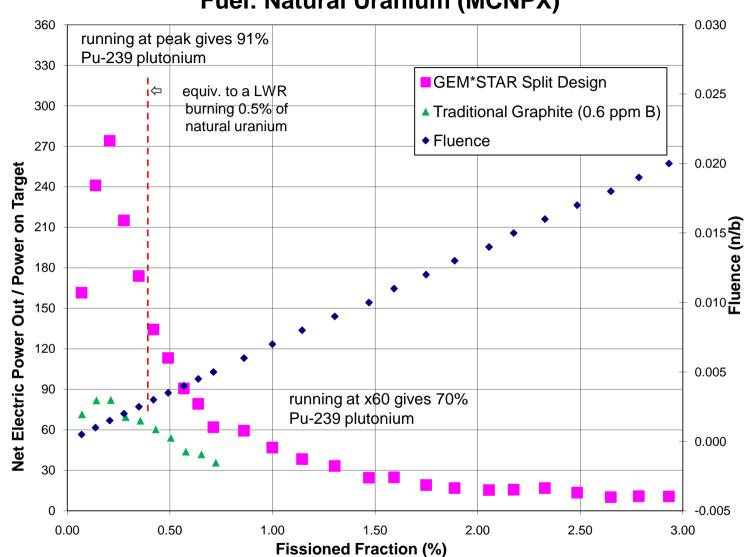
ADNA & GEM*STAR Consortium

31

Target Considerations

Existing Oak Ridge SNS Molten Hg target (1 MW)

- ~ 4 MW to produce 220 MW_e net output
- diffuse (multiple) beam spots
- molten salt used for heat removal
- high neutron yield from uranium

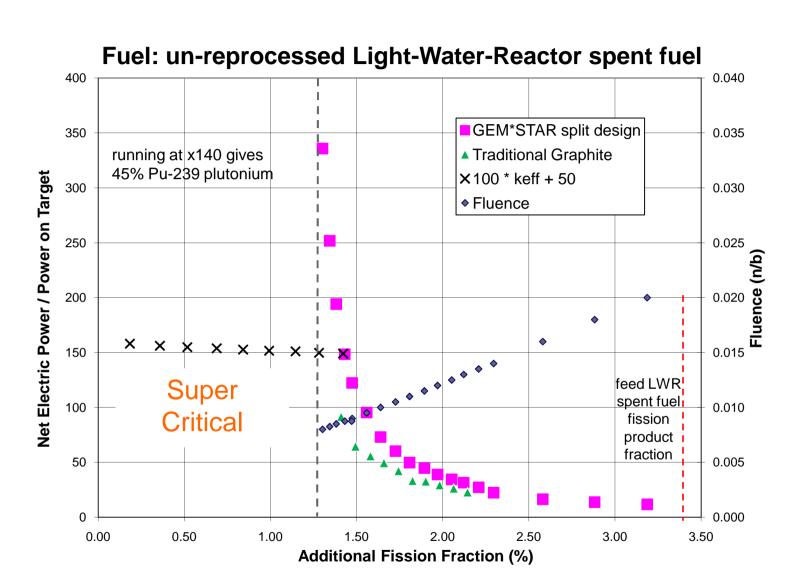

(but minimize target fission)

- spent target fluorinated and used as fuel
- minimize impact on local reactivity

GEM[∗]STAR

Invent

the Future



Fuel: Natural Uranium (MCNPX)

ADNA & GEM*STAR Consortium

GEM****[∗]STAR

33

GEM[∗]STAR

Invent the

Future

GEM ***** STAR System

- intrinsic safety: no critical mass ever present;
 far less volatile reactivity in core
- no high-pressure containment vessel
- thermal neutrons: high tolerance to fission products; allows deeper burning
- higher thermal to electric conversion efficiency

no enrichment; no reprocessing; can burn MANY fuels (pure, mixed, *including* LWR spent fuel) with no redesign required

current prices for electricity

(estimated by Black and Veatch, Overland Park, Kansas)

Coal without CO_2 capture7.8Natural gas at high efficiency10.6Old nuclear"3.5"New nuclear10.8Wind in stand alone9.9Wind with the necessary base line back-up12.1Solar source for steam-driven electricity21.0Solar voltaic cells; higher than solar steam electricity

*NYT, Sunday (3/29/09) by Matthew Wald

GEM*STAR: 4.5 ¢ per kWh with natural uranium fuel

cents/kwh

High Temperature MS Advantages over LWRs

- 34% → 44% efficiency for thermal to electric conversion (low-pressure operation)
- match to existing coal-fired turbines, enables staged transition for coal plants, addressing potential "cap-and-trade" issues
- synthetic fuels via modified Fischer-Tropsch methods (including new insights to coal & methane utilization) – very attractive (much more realistic than hydrogen economy)

 $3C + 6H_2O + heat input \rightarrow 3CO_2 + 6H_2 \rightarrow 2CH_2 + 4H_2O + CO_2$ $C + O \rightarrow CO; CO + 2C + CH_4 + 3H_2O + heat \rightarrow 4CO + 5H_2 \rightarrow 3CH_2 + 2H_2O + CO_2$

37

GEM * STAR potential to transform the nuclear policy landscape:

- not a 'niche', but rather base-line capable (green) energy source
- reduce US dependence on imported oil via cost-competitive synthetic fuel production
- exportable technology (non-proliferating)
- current "once-through-U", "supplier–user" US policy towards developing countries not viable for many; **GEM*STAR** provides a real alternative

(especially towards India, whose Th program is based on a proliferation prone technology)

GEM*STAR


What are the obstacles?

- GEM*STAR uses liquid fuel but NRC is only "comfortable" with solid fuel, despite MSRE success
- Commercial nuclear power is an outgrowth of Naval Nuclear Propulsion program using pressurized water reactors
- ➤ Engineers in nuclear industry have little experience with accelerators; physicists using accelerators have little experience with nuclear power plants ⇒ little cooperation in base programs (vague talk about a distant ATW application)
- current focus (in US) only on existing and "modular" reactors (scaled down versions of existing deployed technology)

Invent the Future

GEM**[∗]**STAR

from an establishment perspective...

GEM*STAR Consortium ADNA &

40

ADNA (Accelerator Driven Neutron Applications, Inc)

- venture capital for demonstration facility
 - commercial project for liquid transportation fuel

GEM*STAR Consortium (VT, UVa, VCU, JLab)

- continue to engage funding agencies and raise awareness (DOE, ARPA-E, DTRA, NSF, NNSA, Foundations, Federal and State governments, etc)
 - already prompted DOE to re-visit ADS less than a year after its "Accelerators for America's Future" study, resulting in a positive first step
- Virginia research facility
 - SC LINAC (protons or electrons) driving a sub-critical system for study and training; potential India partner
- Powerful motivation for existing and NEW multidisciplinary research avenues...

41

Research Avenues for GEM*STAR Consortium Members

Engineering: Spallation Target Designs RF Power Systems MS Heat Exchanger Systems and Failure Mode Analysis

⁷Li Isotopic Enrichment Reactor Design Fusion Neutron Sources Brayton Cycle Systems

Science:

Neutronics of New Graphite Forms Synthetic Liquid Transportation Fuel Alloys for MS Containment Fission Product and Actinide Solubilities in MS Fluorination Techniques SC Spoke and Elliptical Cavities Simulations (MCNPX, GEANT4, etc) Improved & New Cross-Sections

Humanities:

Energy Policy Regulatory Environment Work-Force Development Business Models for Trans. Tech. National Security Foreign Policy & IAEA Virginia Industrial Development Coal Industry and CO₂ Issues Environmental Implications

Return on Investment

- 1) Waiting for solicitations means that *someone else* wrote them, and is in the best position to answer them.
- 2) Chance to lead in a solution to one of the world's most challenging problems.
- 3) No science reason this will not work just a question of final cost (projected to be very economical). Solves so many problems so well, that even a partial success is significant (no way to completely "guarantee" the technology can not be misused).
- 4) Ideal role for Universities: "This offers the scope, impact, and long-range research funding potential we've been looking for." VT President Steger

GEM****≉STAR

Invent the Future

ADNA & GEM*STAR Consortium

44

*

Deployed Civilian Reactor Types

Reactor Type	Main Countries	GWe	Fuel	Coolant	Moderator
Light Water Reactors	US, France, Japan, Russia	337	enriched UO ₂	water	water
Heavy Water Reactors	Canada	43	natural UO ₂	heavy water	heavy water
Gas-cooled Reactors	UK	18	natural U (metal), enriched UO ₂	CO2	graphite
Light Water/ Graphite Reactors	Russia	12	enriched UO ₂	water	graphite

82% produced by LWR