

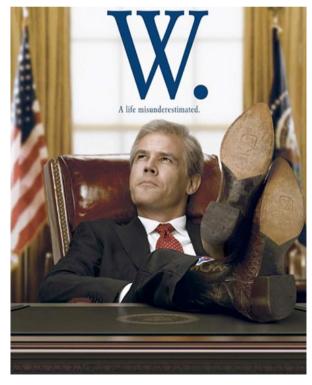
W/Z Physics at CMS

Kristian Hahn - MIT

High Energy Physics Seminar

University of Virginia Jan 19, 2011

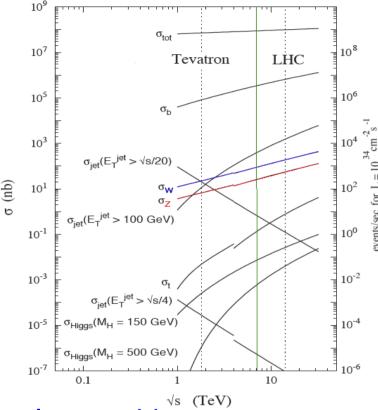
Introduction & Outline


- Focus of this talk: the first electron & muonchannel W/Z inclusive cross section and ratio measurements by CMS
- A simple expression for the cross sections ...

$$\sigma(pp \to \{W,Z\}) \times BR(\{\ell v,\ell \ell\}) = \frac{iN_{\{W,Z\}}}{\alpha \epsilon \int Ldt}$$

... but sophisticated treatments of the ingredients!

- Will address these in turn ...
 - Detector
 - Selection & Efficiency
 - W & Z Signal Extraction
 - Results


1417

Motivation

Why "rediscover" W and Z at the LHC?

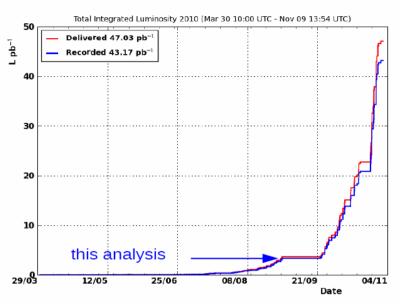
- New perspectives on familiar physics ...
 - Cross sections ~4x larger than at Tevatron
 - $\sigma xBR(W \rightarrow \ell v) \sim 10$ nb per channel
 - $\sigma xBR(Z \rightarrow \ell \ell) \sim 1$ nb per channel
 - Larger sea-sea component, HERA-like low x
 - W production globally charge asymmetric
 - pp : 2x u-dbar collisions vs d-ubar due to valance quark content
 - Sea interactions dilute W+/W- from 2 → ~1.4

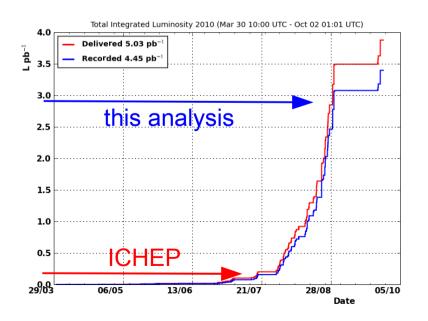
- Develop experience with the detector, high-pT leptons & MET using W/Z
- Verify expected performance on "familiar roads" now, avoid problems later!

1111

History & Data Samples

- March: first pp collisions @ 7 TeV
- June: 37 nb⁻¹, significant signals in all channels
- July 14: CMS approval for 78 nb⁻¹ analysis. ~10% non-lumi precision
- July 20: Analysis updated to 198 nb⁻¹ presented at ICHEP2010, July 22


http://cdsweb.cern.ch/record/1279615


- Aug-Sept: 3 nb⁻¹ collected, 10K W's, 1K Z's
- Oct-Nov: 3 nb⁻¹ results complete, submitted to JHEP

arXiv:1012.2466v2

- Dec : accepted for publication
- Present: 35 pb⁻¹ precision measurements in-progress

Integrated luminosity

CMS Detector

Pixels (100 x 150 μm²) ~1m² 66M channels

Microstrips (50-100µm)

~210m² 9.6M channels

Pixels Tracker ECAL HCAL Solenoid Steel Yoke Muons

STEEL RETURN YOKE ~13000 tonnes

ZERO-DEGREE CALORIMETER CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
76k scintillating PbWO₄ crystals

PRESHOWER

Silicon strips

~16m2 137k channels

CASTOR CALORIMETER

Tungsten + quartz plates

SUPERCONDUCTING SOLENOID

Niobium-titanium coil carrying ~18000 A

FORWARD CALORIMETER

Steel + quartz fibres

Total weight Overall diameter Overall length Magnetic field : 14000 tonnes

: 15.0 m : 28.7 m

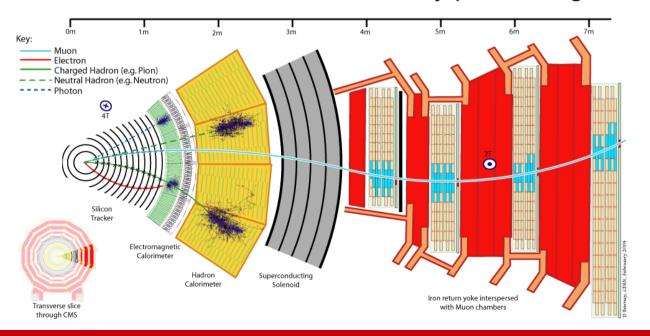
: 3.8 T

HADRON CALORIMETER (HCAL)

Brass + plastic scintillator

MUON CHAMBERS

Barrel: 250 Drift Tube & 500 Resistive Plate Chambers


Endcaps: 450 Cathode Strip & 400 Resistive Plate Chambers

Mir

CMS Detector (2)

- Subsystems central to the W/Z analysis :
 - Silicon Tracker momentum measurements, direction, vertexing
 - ~10 M strip, 66 M pixel readout channels
 - Electromagnetic Calorimeter (ECAL) electron (& photon) energy
 - 76 K PbTO4 crystals
 - Muon Chambers muon identification
 - Drift Tubes, Cathode Strip, Resistive Plate
 - Trigger Level-1 (L1) and High-Level (HLT)
 - Hardware and low latency processing farm

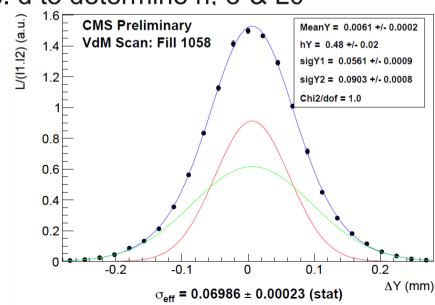
- Thorough commissioning → dividends to the analysis!
 - Not easy, many obstacles overcome ...
 - Ask about Tracker!

Integrated Luminosity

- Relative instantaneous luminosity from online HF occupancy
- Calibrated w/ absolute scale from Van der Meer scan for specific fills
 - Luminosity a function of beam separation (d), modeled as 2xGaussian

$$\mathcal{L} = \mathcal{L}_0 \left(\frac{h_j}{\sqrt{2\pi}\sigma_{1j}} \exp \frac{-d^2}{2\sigma_{1j}^2} + \frac{(1 - h_j)}{\sqrt{2\pi}\sigma_{2j}} \exp \frac{-d^2}{2\sigma_{2j}^2} \right)$$

Bunch Intensities, from Beam **Current Measurements**

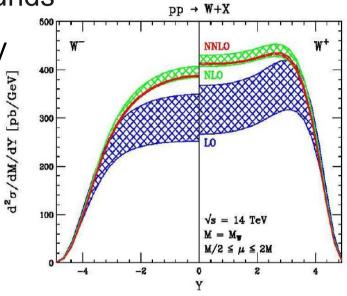

Peak lumi (L0) depends on effective beam width

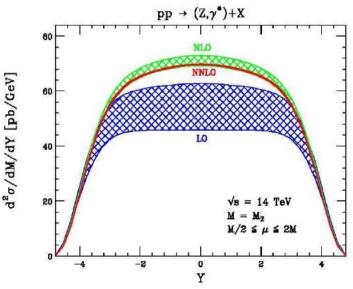
$$\sigma_{\rm eff}(j) \equiv \left(\frac{\sigma_{1j}\sigma_{2j}}{h_j\sigma_{2j} + (1 - h_j)\sigma_{1j}}\right) \qquad \mathcal{L}_0 \equiv \frac{N_1 N_2 \nu_{\rm orb} N_b}{2\pi \sigma_{\rm eff}(x)\sigma_{\rm eff}(y)}$$

$$\mathcal{L}_0 \equiv \frac{N_1 N_2 \nu_{\text{orb}} N_b}{2\pi \sigma_{\text{eff}}(x) \sigma_{\text{eff}}(y)}$$

- N1, N2, ν, & Nb given, scan d and fit L vs. d to determine h, σ & L0
- Uncertainty dominated by LHC beam currents (5% per beam, assumed correlated)

Error	Value (%)
Beam Background	0.1
Fit Systematics	1.0
Beam Shape	3.0
Scale Calibration	2.0
Zero Point Uncertainty	2.0
Beam Current Measurement	10.0
Total	11.0





Simulation

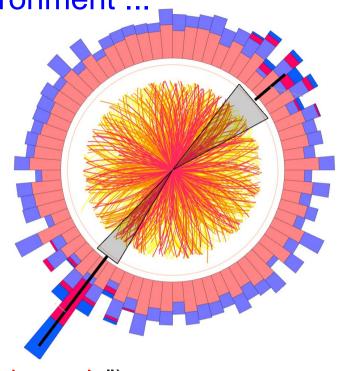
- Large-sample Monte Carlo (MC) for Electroweak processes
 - Acceptances for signal & non-QCD backgrounds
 - W, W-background missing transverse energy (MET) & Z mass shapes
 - Starting point for selection optimization
 - Initial efficiency estimates
 - Corrected with data-driven scale factors
- Baseline EWK MC generation
 - POWHEG NLO + CTEQ 6.6 (NLO)
 - PYTHIA showering
 - Tauola for W & Z tau-channel BGs
 - Full GEANT4 simulation
- Additional tools employed for systematics

CMS Computing

- Data handling/processing in CMS is necessarily distributed
 - MC generated at 51 international computing sites (T2's)
 - Data and MC reprocessed at 7 national computing centers (T1's), transferred to T2's/T3's for analysis
 - Prompt reconstruction direct from CERN generally not used in CMS analysis
 - Data for W/Z underwent multiple reprocessing passes with updated alignments and calibrations

- And challenging: lots of data/MC to process, many places for problems to arise
- Infrastructure, software, production tools and operators all must work seamlessly

- Example, 2010 statistics
 - 3.1 B MC events (2.2 PB) generated
 - 10 B data events (1.6 PB) reprocessed

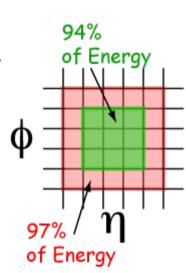

MIT.

Offline Reconstruction: Muons & Tracks

• Tracking a challenge in a dense detector environment ...

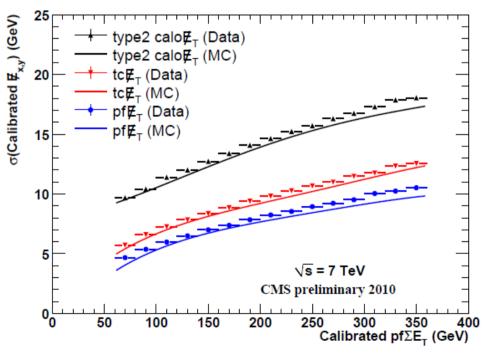
- Lots of Tracker material → bremsstrahlung
- Specialized tracking algorithm addressed this
 - Baseline: Gaussian model of energy loss
 - More accurately w/ a Gaussian mixture
 - "Gaussian Sum Filter" (GSF) used for eles
- Muon reconstruction
 - Two primary categories of muons in CMS
 - Track matched to muon detector segment ("tracker-only")
 - Hits from track and segment re-fit into a global muon track
 - Use candidates that have been reconstructed by both methods
 - But utilize kinematics from the tracker-only muons
 - Global tracking improves kinematics only at very high-pT
 - But requiring both methods reduces backgrounds

<u> Pilit</u>


Offline Reconstruction: Electrons

- Electron reconstruction
 - Candidates are a combination of GSF tracks and SuperClusters
 - electrons/photons deposit most energy in clusters, 5x5 crystals
 - Bremsstrahlung → multiple clusters spread in phi
 - Combine cluster into SuperCluster, recover incident energy
 - GSF tracking driven from an ECAL SuperCluster seed
 - ECAL Seed Et > 4 GeV
 - Add pixel hits from position of energy weighted cluster sum
 - Gives incident direction before radiation.
 - We use energy from ECAL, direction from track

- Spike removal : Anomalous ECAL noise
 - Veto if Σ(adjacent energy)/energy < 5%
- Additional Endcap alignment corrections



M!L

Offline Reconstruction: Missing Energy

- Three types of missing Energy (MET) reconstruction
 - 1) Purely calometric : negative vector sum of deposits in all towers
 - 2) Track-corrected : assume all tracks are pions. Corrections to energy deposits using track pT
 - 3) Particle-flow: MET calculated from full reconstruction of all stable particles in the event
- Significant improvements in resolution from corrected MET
 - TC & PF performance essentially equivalent for W → Iv
 - PFMET part of a comprehensive reconstruction routine
 - Key benefits to jet and tau reconstruction
- We utilize PF MET in the W analyses

Lepton and Event Selection

Mil

Muon Selection: Online

L1 muon trigger

- Muon segment finding with DT & CSC, σ(pT)/pT ~ 20%
- RPC adds 1ns timing info, locates BX
- Arbitration performed, highest pT segments passed to HLT
- HLT: first-pass muon reconstruction
 - Performs regional tracking using L1 inputs
 - Tracking algorithms simple, must balance precision and speed
 - Some information not available (PV)
- A single trigger path used for W/Z
 - L1 pT > 4 GeV
 - HLT pT > 9 GeV, no isolation

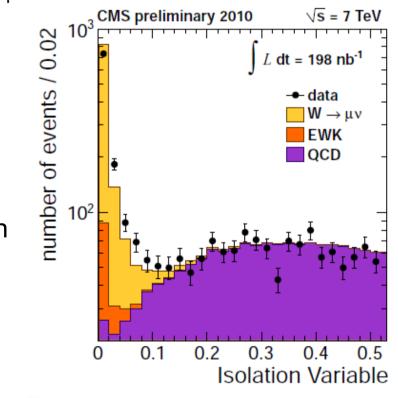
- Muon "Pre-triggering"
 - Trigger timing not exact in early 2010, sometimes trigger wrong event
 - Impacts 1% of barrel muons only, accounted for in efficiency

1111

Muon Selection: Offline

Kinematic and event selection

$$Z \rightarrow \mu \mu$$


- 2 reconstructed μ 's, $p_{T} > 20 \text{ GeV}$
- $|\eta| < 2.1, 2^{nd} \mu \text{ in } |\eta| < 2.4$
- 60 GeV < M_{μμ} < 120 GeV
- Opposite charge

Quality Requirements

- ≥ 10 tracker hits, ≥ 1 pixel hits
- ≥ 2 muon stations matched to track
- Both Inside-out & outside-in reconstruction
- χ^2 /ndf < 10 from global fit
- Cosmic veto, d₀ < 2 mm
- Combined Relative Isolation

$$W \rightarrow \mu \nu$$

- 1 reconstructed μ , $p_{_{T}} > 20$ GeV
 - Veto if 2^{nd} μ , $p_{_T} > 10$ GeV
- |η|<2.1

$$I_{\text{comb}}^{\text{rel}} = \left\{ \sum (p_T(tracks) + E_T(em) + E_T(had)) \right\} / p_T(\mu)$$
 < 0.15

Electron Selection: Online

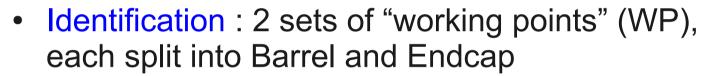
- L1 Calorimeter triggers
 - Form pairs of Calo towers, send most energetic to HLT
 - Coarse isolation also calculated
- Electron and Photon HLT
 - Start with ECAL seeds from L1
 - Prompt calibration of ECAL scale, sigma(ET)/ET ~
 - If matching pixel hits then follow electron path, else γ
 - Electron reconstruction algorithms similar to offline
- Run-dependent trigger selection for W/Z
 - Needed to reduce rate as LHC intensity improved
 - Runs 132440-137028: HLT_Photon10_L1R
 - Runs 138564-140401: HLT_Photon15_Cleaned_L1R
 - Runs 141956-144114: HLT_Ele15_SW_CaloEleId L1R
 - Tried to avoid electron HLT for as long as possible ...
 - Alignment concerns could complicate measurement of $\epsilon_{_{\text{trg}}}$

Cuts on Calorimeter quantities only

Electron Selection: Offline

Kinematic & event selection

$$Z \rightarrow ee$$

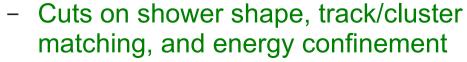

- 2 reco ele's, $p_{\scriptscriptstyle T}$ > 20 GeV
- No opposite charge requirement
- 60 GeV < M < 120 GeV

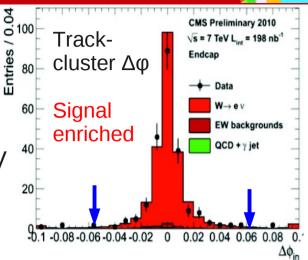
$W \rightarrow ev$

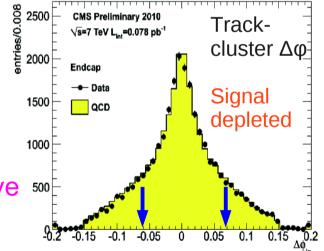
1 reco ele, p_τ > 20 GeV

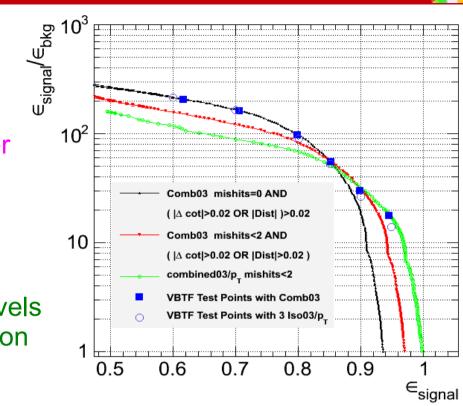
 $|\eta| < 2.1$, 2nd ele in $|\eta| < 2.4$ • Veto if 2nd ele, $p_{\tau} > 20$ GeV

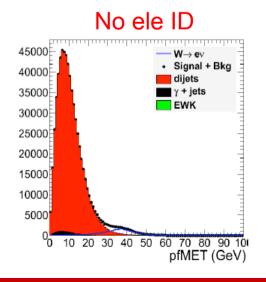
passing WP95 (below)

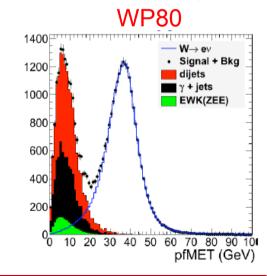



Z originally WP95, later tightened to WP80


	W	P95	WP80	
	Barrel	Endcap	Barrel	Endcap
$I_{\rm trk}/E_T$	0.15	0.08	0.09	0.04
I_{ECAL}/E_T	2.0	0.06	0.07	0.05
I_{HCAL}/E_T	0.12	0.05	0.10	0.025
Missing hits ≤	1	1	0	0
Dcot	_	_	0.02	0.02
Dist	_	_	0.02	0.02
$\sigma_{i\eta i\eta}$	0.01	0.03	0.01	0.03
$\Delta \phi_{in}$	_	_	0.06	0.03
$\Delta \eta_{in}$	0.007	_	0.004	_
H/E	0.15	0.07	0.04	0.025






Electron Selection: Offline (2)

- WorkingPoint ID optimization
 - Initially with W & QCD simulation
 - Iterative procedure, treats each variable individually, then together
 - Later, with data ...
 - BG sample : MET < 15 GeV
 - Signal : MET > 30 GeV
 - Algorithm robust against small levels of signal/background contamination
- More sophisticated ID techniques under study
 - Cuts categorized by E/P
 - Multivariate Methods
 - Likelihood
 - Neural Net
 - K-Nearest Neighbor (kNN)

Signal Acceptance

 What fraction of delivered signal events end up in our data sample?

$$\sigma xBr = \frac{N_{\{W,Z\}}}{\alpha \epsilon \int Ldt}$$

- 1st stage of event rejection (acceptance) from limited detector geometry
- Subsequent stages from high-quality lepton requirements (efficiency)
- Signal acceptance (α) from kinematic selection applied to MC
 - Primarily theoretical, compartmentalizes assoc. uncertainties
- Dedicated studies explore effects not captured by baseline MC
 - Effects are small, taken as systematic uncertainty

EWK & FSR	HORACE
PDFs	CTEQ, MSTW, NNPDF
Higher-order corrections & ISR	ResBos for missing NNLO FEWZ for beyond NNLO
α_s scaling	ResBos

Signal Acceptance: Electrons

- α^{ECAL}: fraction of generated events with fiducial ECAL supercluster(s) passing kinematic selection
 - Separate into ECAL Barrel (EB : $|\eta| < 1.44$) and Endcap (EE: 1.57 < $|\eta| < 2.5$)
 - SuperCluster E_T > 20 GeV
 - Zee: 60 GeV < M_{ee} < 120 GeV

A^{ECAL}	W^+	W-	W^{\pm}
EB	0.3618	0.3532	0.3571
EE	0.2277	0.1899	0.2070
EB+EE	0.5895	0.5431	0.5641

A^{ECAL}	$Z \rightarrow e^+e^-$
EB+EB	0.2257
EB+EE	0.1612
EE+EE	0.0476
all	0.4345

- Theory uncertainties are on order 1-2%
 - Take half of max. spread after re-weighting with various PDF sets
 - Other effects studied with dedicated programs

Quantity	Syst. (%)
W ⁺ acceptance (e)	0.9
W ⁻ acceptance (e)	1.5
W acceptance (e)	0.8
Z acceptance (e)	1.1
W^+/W^- correction (e)	1.7
W/Z correction (e)	0.9

Source	$W^+ o e \nu$	$W^- ightarrow e u$	$Z \rightarrow ee$	$W^{+}/W^{-}(e)$	Z/W(e)
QCD-HO and ISR	-1.30%±0.09	$-0.78\% \pm 0.10$	±0.6%	$0.56\% \pm 0.13$	0.47%±0.17
QCD- α_s scaling	0.23%±0.22	0.37%±0.32	±1.1%	$1.13\% \pm 0.63$	0.57%±0.52
FSR	0.08%±0.17	0.07%±0.19	$-0.11\% \pm 0.24$	$0.15\% \pm 0.27$	-0.10%±0.30
EWK	0.07%±0.13	0.21%±0.19	$-0.47\% \pm 0.22$	0.00%±0.27	-0.70%±0.29
Total	1.33%	0.90%	1.34%	1.27%	1.03%

11117

Signal Acceptance: Muons

- α ": fraction of generated events with generator-level muon(s) passing kinematic selection
 - Generator p_T > 20 GeV
 - Calculated after FSR
 - W: $|\eta| < 2.1$
 - $Z:60~\text{GeV} < M_{\mu\mu} < 120~\text{GeV}, |\eta| < 2.1, 2.5$
- Theory uncertainties are on order 1-2%
 - Take half of max. spread after re-weighting with various PDF sets
 - Other effects studied with dedicated programs

$W \rightarrow \mu \nu$	A
W ⁺	0.5413 ± 0.0060
W-	0.5023 ± 0.0055
W±	0.5253 ± 0.0058

A	$Z \rightarrow \mu^+\mu^-$
Z	0.3977 ± 0.0048

Quantity	Syst. (%)
W^+ acceptance (μ)	1.3
W^- acceptance (μ)	1.9
W acceptance (μ)	1.1
Z acceptance (μ)	1.2
W^+/W^- correction (μ)	2.1
W/Z correction (μ)	1.1

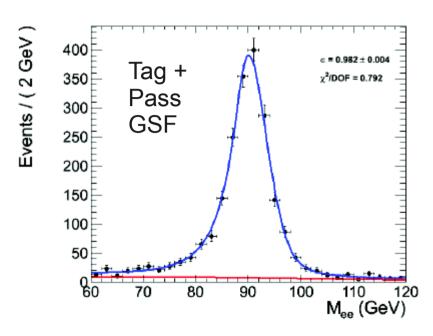
Source	$W^+ o \mu \nu$	$W^- o \mu \nu$	$Z \rightarrow \mu^+\mu^-$	$W^{+}/W^{-}(\mu)$	$Z/W(\mu)$
QCD-HO and ISR	-1.39%±0.09	$-1.17\% \pm 0.14$	±0.6%	$0.22\% \pm 0.17$	$0.70\% \pm 0.18$
QCD- α_s scaling	$0.23\% \pm 0.22$	$0.37\% \pm 0.32$	±1.1%	$1.13\% \pm 0.63$	$0.57\% \pm 0.52$
FSR	$0.11\% \pm 0.12$	$0.01\% \pm 0.17$	$0.38\% \pm 0.24$	$-0.08\% \pm 0.19$	$0.15\% \pm 0.27$
EWK	$-0.02\% \pm 0.12$	$0.26\% \pm 0.17$	$-1.02\% \pm 0.24$	$0.28\% \pm 0.19$	-0.98%±0.24
Total	1.42%	1.26%	1.58%	1.19%	1.35%

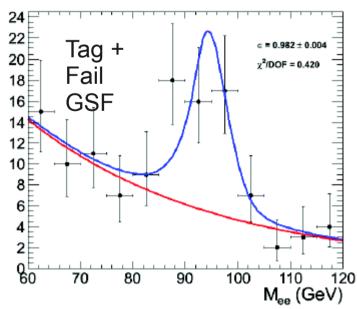
<u> Pilit</u>

Efficiencies

 Trigger, identification & isolation requirements lead to additional event loss

$$\sigma xBr = \frac{N_{\{W,Z\}}}{\alpha \epsilon \int Ldt}$$


- Relevant efficiencies also determined with MC, ε^{MC}
- BUT, do not expect simulation perfectly models data!
- Correct ϵ^{MC} with data-driven scale factors, $\rho_i = \epsilon^{Data}$, $/ \epsilon^{MC}$
 - Eg: total single-lepton efficiency : $\epsilon^{\text{MC}}_{\text{reco}} \epsilon^{\text{MC}}_{\text{ID}} \epsilon^{\text{MC}}_{\text{trig}} \rho_{\text{reco}} \rho_{\text{ID}} \rho_{\text{trig}}$
- Determine ρ using Z-based "tag & probe" technique
 - Z selection: tight requirements on one leg (probe) + 60 < M_n < 120 GeV
 - Uncorrelated requirements on other leg (probe), apply selection
 - Could obtain efficiencies from counting after BG subtraction ...
 - Better, from simultaneous M_n fit to passing & failing samples
 - Exploits additional shape information
 - Benefits for assessing correlated uncertainties


MIT.

Efficiencies: Electrons

- Tag & Probe
 - Tag always a WP80 electron
 - Signal shapes : MC or analytic
 - Background modeled as exp x polynomial
- ϵ_{reco} : SuperCluster \rightarrow GSF track
 - Background most significant for this ε
 - Probe: Supercluster with loose H/E, showershape and Iso_{FCAI} cuts
 - Results cross-checked w/ MC BG template
- $\epsilon_{_{\text{ID}}}$: GSF track \rightarrow ele passing WP cuts
 - Probe : Reco electron candidate
 - Check w/ MC BG template, SS/OS method
- $\epsilon_{_{\text{ID}}}$: ID'ed ele \rightarrow trigger match
 - Probe : electron passing ID
 - No bg left at this stage, simple counting
 - Checked using ECAL activity trigger

Events / (5 GeV)

IIIIT.

Efficiencies: Electrons

Efficiency	Data	Simulation	Data/Simulation ($ ho_{ m eff}$)			
	EB					
$\epsilon_{ ext{TNP-REC}}$	(98.6 ± 0.5) %	98.50%	1.001 ± 0.005			
$\epsilon_{ ext{TNP-WP80}}$	(79.1 ± 1.8) %	85.50%	0.925 ± 0.021			
$\epsilon_{ ext{TNP-WP95}}$	$(93.9 \pm 1.5)\%$	96.4%	0.974 ± 0.016			
$\epsilon_{ ext{TNP-TRG80}}$	$(98.9 \pm 0.3)\%$	99.70%	0.992 ± 0.003			
$\epsilon_{ ext{TNP-TRG95}}$	(98.7 ± 0.2) %	99.4%	0.992 ± 0.002			
$\epsilon_{ ext{TNP-WP80-ALL}}$	(77.1 ± 1.8) %	83.9%	0.919 ± 0.022			
$\epsilon_{ ext{TNP-WP95-ALL}}$	$(91.3 \pm 1.5)\%$	94.4%	0.967 ± 0.016			
		EE				
$\epsilon_{ ext{TNP-REC}}$	(96.2 ± 0.8) %	96.3%	0.999 ± 0.009			
$\epsilon_{ ext{TNP-WP80}}$	$(69.2 \pm 2.0)\%$	74.9%	0.924 ± 0.027			
$\epsilon_{ ext{TNP-WP95}}$	$(90.3 \pm 1.9)\%$	93.9%	0.962 ± 0.020			
$\epsilon_{ ext{TNP-TRG80}}$	$(99.2 \pm 0.5)\%$	98.80%	1.003 ± 0.005			
$\epsilon_{ ext{TNP-TRG95}}$	(99.16 ± 0.02) %	97.7%	1.015 ± 0.0003			
$\epsilon_{ ext{TNP-WP80-ALL}}$	(66.0 ± 2.0) %	71.3%	0.926 ± 0.028			
$\epsilon_{ ext{TNP-WP95-ALL}}$	$(86.1 \pm 1.9)\%$	88.3%	0.975 ± 0.022			

•	Trigger and Reco
	efficiency well
	modeled in MC

- ID efficiency less so
 - Some alignment discrepancies persist after posthoc corrections

Single electron ϵ & ρ

	$\rho_{_{eff}}$	ε _{MC}	$\epsilon_{_{MC}} x \; \rho_{_{eff}}$
W+	0.917 ± 0.046	0.779 ± 0.005	0.714 ± 0.036
W-	0.927 ± 0.047	0.788 ± 0.006	0.730 ± 0.037
W	0.921 ± 0.036	0.782 ± 0.004	0.721 ± 0.028
Z	0.856 ± 0.050	0.656 ± 0.007	0.562 ± 0.033

ε & ρ as used in the analysis, acceptance weighted

1111

Efficiency Systematics : Electrons

Background Model

- Consider power-law $(1/M^{\alpha})$ as alternative model to exponential
- Fix α to value found from fit to dijet data and generate pseudo-experiments
- Fit each trial with exponential, measure bias

Energy Scale /Resolution

- Scale corrections discussed on next slide
- Apply corrections ± uncertainties to the MC, measure difference in yield

Signal Shape

- Extend Mee window to include more of the low mass tail, 50-120 GeV
- Construct data-driven signal shapes by tightening selection on Tag+Fail
 - Fit with these templates, difference w.r.t nominal fit is the systematic

Source	% ε _{reco}	% ε _{reco-WP95}	% ε _{reco-WP80}	% ε _{WP80-HLT}	% ε _{WP80-HLT}
Background Model	0.06	0.25	0.24	0.01	< 0.00
Energy Scale	0.1	0.1	0.2	< 0.00	0.1
Signal Shape	1.2	1.0	2.0	-	-

<u> Pilit</u>

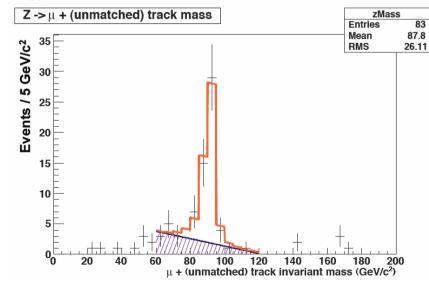
Muon Tag & Probe

- Technique somewhat more involved than for electrons ...
 - Multicategory simultaneous fit for all efficiencies and signal yield

$$\begin{array}{lcl} N_{\mu\mu}^{\rm 2HLT} & = & N_{Z\rightarrow\mu^+\mu^-}\epsilon_{\rm HLT}^2\epsilon_{\rm iso}^2\epsilon_{trk}^2\epsilon_{sa}^2, \\ N_{\mu\mu}^{\rm 1HLT} & = & 2N_{Z\rightarrow\mu^+\mu^-}\epsilon_{\rm HLT}(1-\epsilon_{\rm HLT})\epsilon_{\rm iso}^2\epsilon_{trk}^2\epsilon_{sa}^2, \\ N_{\mu s} & = & 2N_{Z\rightarrow\mu^+\mu^-}\epsilon_{\rm HLT}\epsilon_{\rm iso}^2\epsilon_{trk}(1-\epsilon_{trk})\epsilon_{sa}^2, \\ N_{\mu t} & = & 2N_{Z\rightarrow\mu^+\mu^-}\epsilon_{\rm HLT}\epsilon_{\rm iso}^2\epsilon_{trk}^2\epsilon_{sa}(1-\epsilon_{sa}), \\ N_{\mu t}^{\rm non\,iso} & = & N_{Z\rightarrow\mu^+\mu^-}(1-(1-\epsilon_{\rm HLT})^2)(1-\epsilon_{\rm iso}^2)\epsilon_{trk}^2\epsilon_{sa}^2. \end{array}$$

where ...

Νμμ^{2HLT}: 2 tight μ's, both HLT matched


Νμμ^{1HLT}: 2 tight μ's, one HLT matched

Nμs: tight μ + "stand alone" μ-segment

N\mut: tight μ + (generic) track

 $N\mu\mu^{non iso}$: Two tight μ 's, one not isolated

- Quality criteria subsumed into ϵ_{trk} and ϵ_{sa} in this formulation
- Signal PDF : shape from 1 & 2 HLT categories, background free
- Background PDF : Polynomial x exponential for Nµs, Nµs, Nµµ^{non iso}
- Correctly accounts for correlations between $N_{Z \to \mu\mu}$ and ϵ 's

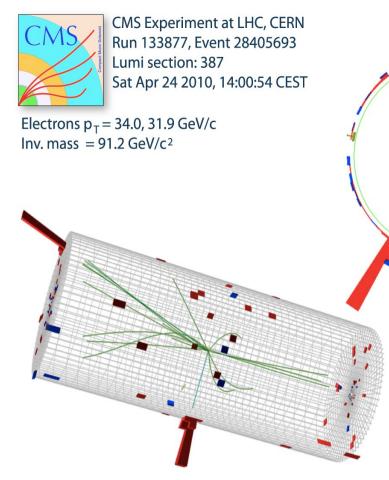
Mit

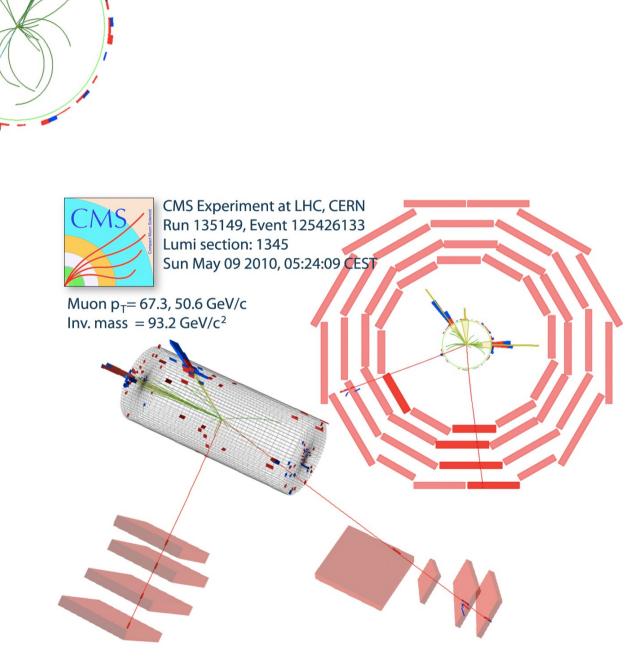
Efficiencies: Muons

- Binned Maximum Log Likelihood fit for ϵ 's and $N_{_{Z \rightarrow \mu\mu}}$
 - Reformulate logL as (Poisson) Likelihood ratio
 - Distributed as χ2 for large N

$$\chi^{2} = \frac{(N_{\mu\mu}^{2\rm HLT} - N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT}^{2} \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{2\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu}^{1\rm HLT}} + \frac{(N_{\mu\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu}^{1\rm HLT}} + \frac{(N_{\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu}^{1\rm HLT}} + \frac{(N_{\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{trk}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu}^{1\rm HLT}} + \frac{(N_{\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm HLT} (1 - \epsilon_{\rm HLT}) \epsilon_{\rm iso}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu}^{1\rm HLT}} + \frac{(N_{\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm iso}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu}^{1\rm HLT}} + \frac{(N_{\mu}^{1\rm HLT} - 2N_{Z\to\mu^{+}\mu^{-}} \epsilon_{\rm iso}^{2} \epsilon_{sa}^{2})^{2}}{N_{\mu}^{1$$

 $\chi_{\mu s}^2 + \chi_{\mu t}^2 + \chi_{\mu u}^{\text{non iso } 2}$


- Systematic Uncertainties
 - Background modeling contributes 1%
 - Zero background assumption for 1 & 2 HLT : 0.2%


Efficiency	Data	Simulation	Data/Simulation ($ ho_{ m eff}$)
$\epsilon_{ ext{SA}}$	(96.4 ± 0.5) %	97.2%	0.992 ± 0.005
$\epsilon_{ m TRK}$	(99.1 ± 0.4) %	99.3%	0.998 ± 0.003
$\epsilon_{ m SEL}$	$(99.7 \pm 0.3)\%$	99.7%	1.000 ± 0.003
$\epsilon_{ m ISO}$	$(98.5 \pm 0.4)\%$	99.1%	0.994 ± 0.004
$\epsilon_{ m TRG}$	$(88.3 \pm 0.8)\%$	93.2%	0.947 ± 0.009
Net (W)	$(82.8 \pm 1.0)\%$	88.7%	0.933 ± 0.012

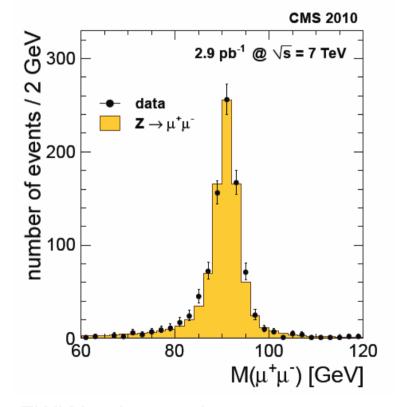
- Largest data/MC scale factor for trigger
 - Known L1 inefficiencies
 - Imperfect modeling of HLT seeding

Z & W Signal Extraction

MLL.

Z→µµ Signal Extraction: Results

- Yield from simultaneous fit, as discussed
- Event selection for the "golden" category


 $\sigma x Br = \frac{N_{\{W,Z\}}}{\alpha \epsilon \int L dt}$

- 2 opposite-Q muons passing IDAt least one passing trigger
- 60 GeV < M_{uu}< 120 GeV
- Yield in the "golden" category

Yield: 913

Expected Signal: 950

source	fraction	$N_{ m est}$
QCD multi-jet	negl.	0.048 ± 0.002
$W o \mu \nu$	negl.	0.03 ± 0.03
$t\overline{t}$	$(0.12 \pm 0.01)\%$	1.19 ± 0.10
$Z ightarrow au^+ au^-$	$(0.05 \pm 0.01)\%$	0.52 ± 0.07
WZ	$(0.08 \pm 0.01)\%$	0.82 ± 0.09
WW	$(0.03 \pm 0.01)\%$	0.31 ± 0.05
ZZ	$(0.06 \pm 0.01)\%$	0.55 ± 0.12
total	$(0.37 \pm 0.02)\%$	3.48 ± 0.18

EWK backgrounds normalized to Z signal template

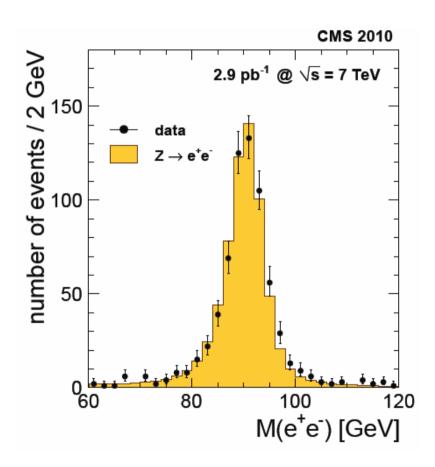
IIIT

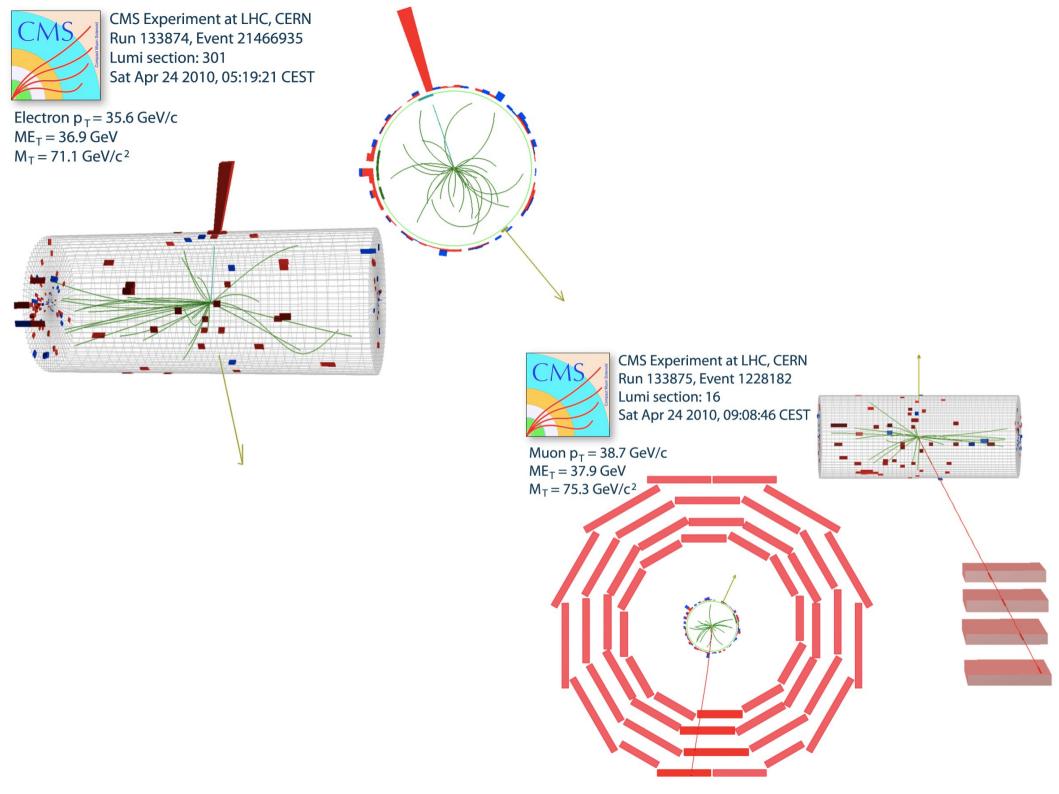
Z→ee Signal Extraction

- Electroweak backgrounds estimated from MC
 - Normalized to signal via NLO cross sections, N_{EWK} = 2.4
- Several estimates for contributions from W+j, p+j, QCD multijets
 - "Fake Rate"
 - Find rates for jets in dijet samples to pass full selection
 - Apply to electron + jet events in signal sample
 - $N_{QCD} = 0.4 \pm 0.4 \text{ (sys + stat)}$
 - Same-Sign/Opposite-Sign
 - Infer QCD background from same-sign events and charge misID
 - Charge misID measured from Z using tighter ID cuts
 - N_{QCD} = 0.0 ± 7.5 (stat) ± 1.3 (sys)
 - Isolation template fit
 - Shapes from M_{ee} side and Z peak with tighter ID
 - $-N_{QCD} = 2.1 \pm 4.6 \text{ (stat)} \pm 0.1 \text{ (sys)}$
 - Use 0.4 ± 0.4 for the final estimate (expect 0.0 from MC)

Z→ee Signal Extraction : Results

Event selection


- 2 WP80 e's
- ≥ 1 passing trigger
- 60 GeV < M_{ee} < 120 GeV
- No opposite charge requirement


Yields

Observed: 677

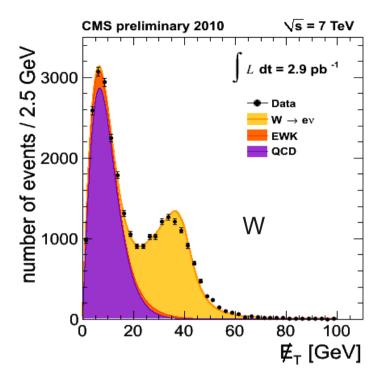
• Signal: 674 ± 26

source	fraction	N_{est}
QCD multi-jet	0.06%	0.4 ± 0.4
$Z \rightarrow \tau^+ \tau^-$ (MC)	0.11%	0.77
di-boson production (MC)	0.12%	0.76
$t\overline{t}$ (MC)	0.11%	0.83
EWK (MC)	0.35%	2.36
total	0.41%	2.8 ± 0.4

W Signal Extraction

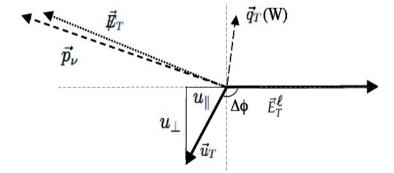
- MET a basis for signal extraction for both e & μ
- $\sigma xBr = \frac{N_{\{W,Z\}}}{\alpha \epsilon \int Ldt}$

- Though some differences in approach ...
- Muons : extraction utilizes transverse mass (MT)


$$M_T = \sqrt{2p_T(\mu) \cancel{E}_T (1 - \cos(\Delta \phi_{\mu, \cancel{E}_T}))}$$

- Binned maximum likelihood template fit
 - Signal MT shapes from data-corrected MC
 - Background shape from cut inverted sample (w/ corrections)
- Fit simultaneously for W+, W- and inclusive yields
- Electrons: employs MET distribution directly
 - Unbinned maximum likelihood "hybrid" fit
 - Signal MET shape from corrected MC
 - Background shape : Analytic function
 - Perform fit for inclusive yield and simultaneous fit for W+, W-

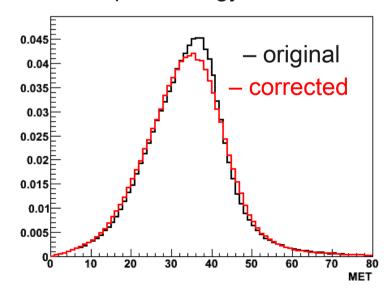
lilit.

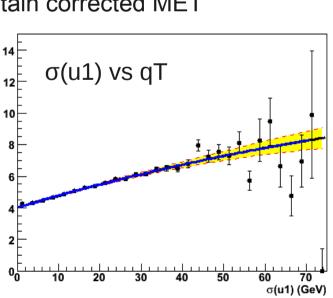

W Shape Corrections: Recoil

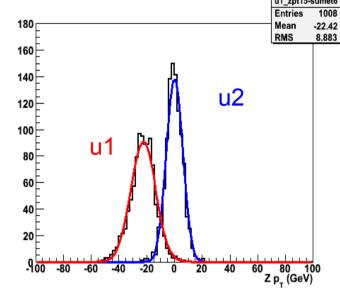
- Poor agreement for W → Iv out of the box ...
 - MC MET /MT shapes must be corrected for :
 - Lepton energy/momentum scale
 - Calorimeter response/resolution
 - Pileup and underlying event
- All addressed via the "recoil method"
 - Produces an improved, "best-fit" W → e/nu signal template
- Recoil vector (u) defined as MET after subtracting off the electron(s)

$$\vec{u} = \vec{E}_T - \vec{E}_T^{\ell}$$

- With PFMET, subtract using SC energy
- Recoil components u1, u2 parallel/perpendicular to boson qT axis
- Calculate u1,u2 for Z MC, Z data and W MC


W Shape Corrections: Recoil (2)



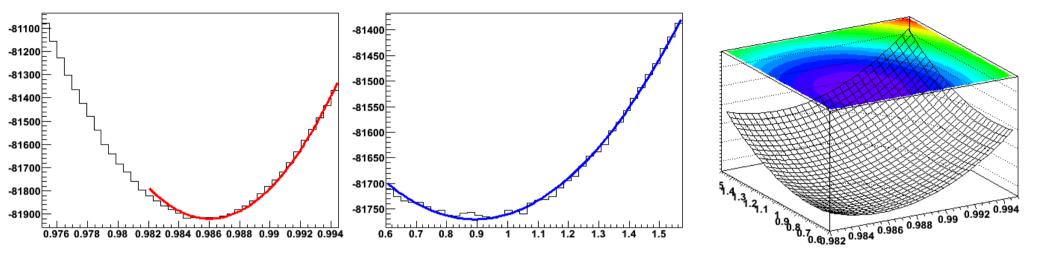

- Model components with Gaussians in qT
 - Fit response (mean) and resolution (width) in qT with 2nd order polynomials
 - Determine Z data/MC scale factors to correct W MC response/resolution

- Again, subtract off the electron electron
- Sample u1/u2 distributions, parameters from scaled W MC curves
- Add the lepton energy/momentum back to obtain corrected MET

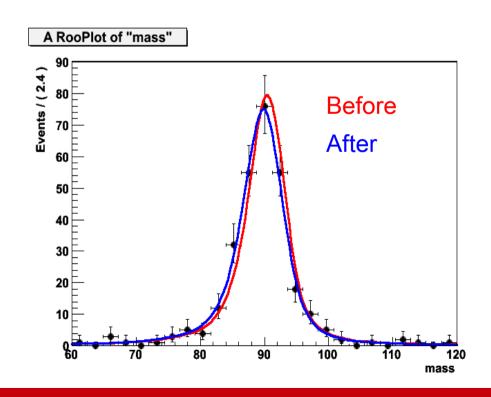
ШT

W Shape Corrections: Energy Scale

- Lepton energy/momentum also summed in the MET calculation
 - This must also be calibrated against data ...
- Electrons energy scale & resolution correction factors from Z's
 - Scale and smear MC electron energy with Gaussian probability function

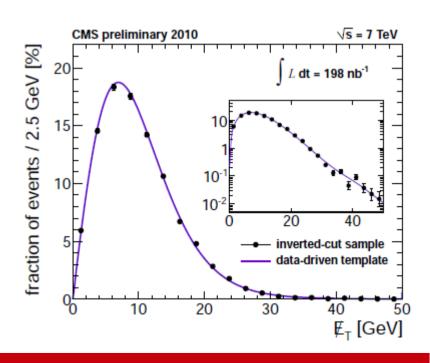

$$E_{new} = Gaus(\alpha E_{old}, \beta)$$

- Scan ranges of α and β, apply to reco MC
- Calculate a new Mee in MC, fit to data, store -log(L) at each step
 - Results in a grid of -log(L) values vs α and β
- Likelihood from fit approx. Gaussian in vicinity of maximum
 - Fit a 2D parabola to the minimum of -log(L)
 - This determines most probable scale factors
 - Stat. uncertainties from $[-\partial^2 \ell/\partial p_i^2]^{-1/2}$


1117

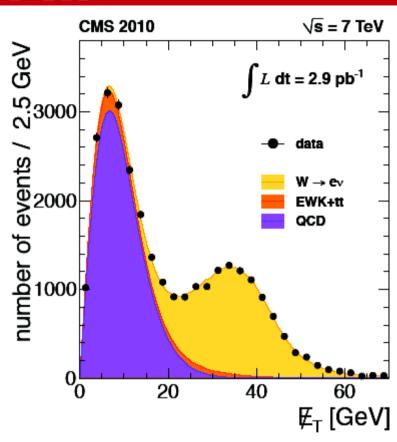
W Shape Corrections: Energy Scale (2)

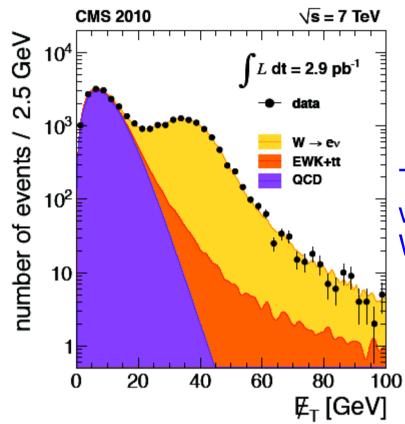
- Overall corrected MC shape: use scaled/smeared MC electrons when adding to corrected recoil
 - 1% shift in EB, 3% in EE
 - Smearing by 1-2 GeV
- Similar procedure for muons ...
 - Muon pT scale/resolution found to be adequate in MC
 - Use only for systematic bound : 0.4%


W→ev Background Model

- Unbinned EML fit w/ static signal & parametrized background shape
 - Signal + EWK backgrounds : POWHEG
 - QCD background : Functional form from first principles ...
 - Rayleigh distribution. : magnitude of vector w/ independent Gaussian components

$$f(x) = Cx \exp\left(-\frac{x^2}{2(\sigma_0 + x\sigma_1)^2}\right)$$

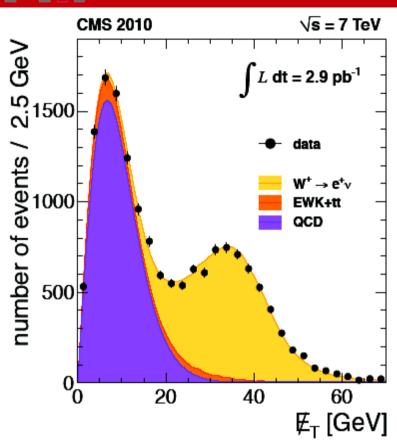

- Tail parameter σ_1 for ΣE_T dependence
- And for real MET from b/c decays
- Validate background model with cut-inverted data samples
 - Iso_{Trk} & $\Delta \phi$ least correlated w/ MET
 - Also used to assess modeling uncertainty

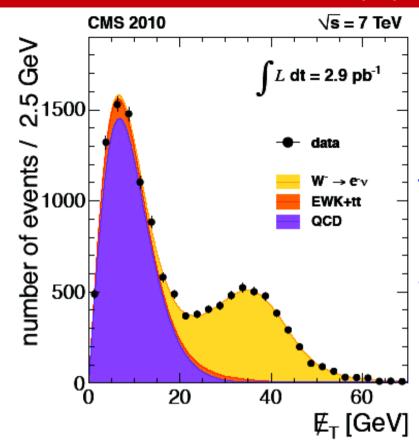


MLL.

W→ev Extraction: Results

This fit performed with an inclusive W template


- Selected Events: 28601
- Extracted Yield: 11895 ± 115
- KS Probability: 0.49


source	N_{bkg}/N_W	how estimated
QCD multi-jet + γ -jet	~ 1.3	from UML fit
$Z \rightarrow e^+e^- + Z \rightarrow \tau^+\tau^-$	8.3%	MC
W o au u	4.5%	MC
di-boson production	0.13%	MC
$t\overline{t}$	0.4%	MC
EWK	13.3%	MC

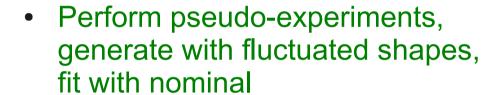
ML.

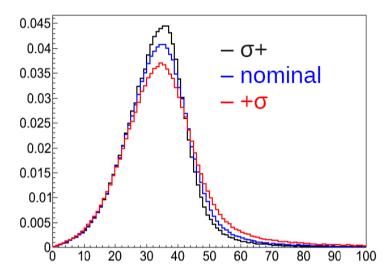
W→ev Extraction: Results (2)

This (simultaneous) fit performed with W+ & W - templates

- e+ events obs. : 15859
- 7193 ± 89
- KS Prob.: 0.39

- e- events obs. : 12742
- 4728 ± 73
- KS Prob.: 0.53

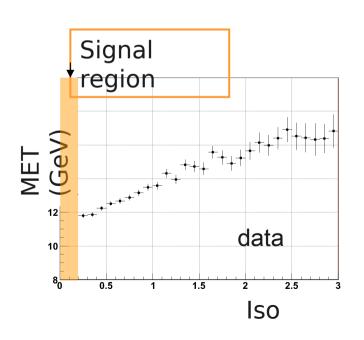

W→ev Extraction Systematics


Signal shape : propagate recoil model & energy scale

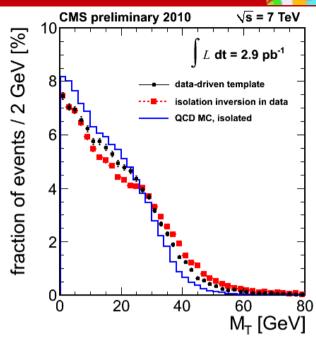
uncertainties to MET & MT

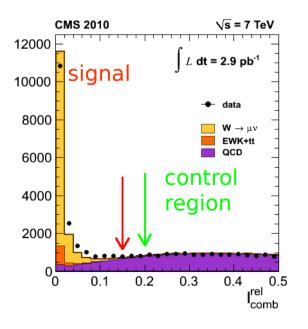
 This gives fluctuated shapes w.r.t that determined from best-fit parameters

σ(recoil): 1.8%, σ(scale): 2.0%


Background model

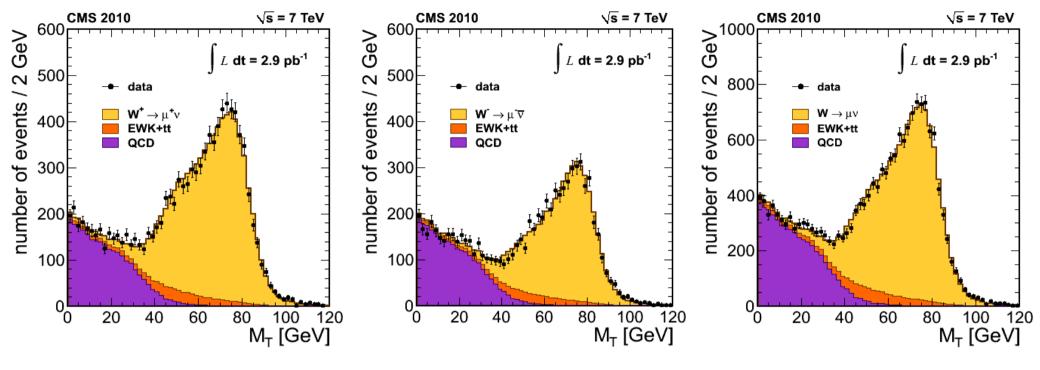
- Add an additional power to the model tail, σ_2^2
- Constrain parameter to largest value found among anti-selected data, anti-selected MC, selected MC
- Use this shape for generation of pseudo-experiements, fit w/ nominal
- σ(background) : 1.3%


W→µv Background Model



- Expect MC to describe QCD only qualitatively
- Better description from sample with isolation requirement inverted
 - Signal contamination negligible here
- But MT and Isolation are correlated ...
 - Hadronic activity decreases isolation, increases SumET, influences MET

- Determine needed
 MET correction from
 behavior in iso-inverted
 sample
 - MET → MET/ (1+axlso), a ~ 0.2
 - Largest spread among 3 predictions as systematic



W→µv Extraction : Results

- μ⁺ events obs. : 10682
- W Yield : 7445 ± 87

- μ⁻ events obs. : 7889
- W Yield : 4812 ± 68
- μ events Obs. : 18571
- W Yield: 12257 ± 111
- W+ & W- yields extracted from a simultaneous fit
 - Total W yield and ratio follow as a result

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CMS-EWK-10-002

Measurements of Inclusive W and Z Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

Measurements of inclusive W and Z boson production cross sections in pp collisions at $\sqrt{s}=7$ TeV are presented, based on 2.9 pb⁻¹ of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give $\sigma(pp\to WX)\times B(W\to\ell\nu)=9.95\pm0.07$ (stat.) ±0.28 (syst.) ±1.09 (lumi.) nb and $\sigma(pp\to ZX)\times B(Z\to\ell^+\ell^-)=0.931\pm0.026$ (stat.) ±0.023 (syst.) ±0.102 (lumi.) nb, where ℓ stands for either e or μ . Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported.

Submitted to the Journal of High Energy Physics

Cross Section Results

arXiv:1012.2466v1 [hep-ex] 11 Dec 2010

Cha	annel	$\sigma imes \mathcal{B}$ (nb)	NNLO (nb)
W	eν μν	$10.04 \pm 0.10 (\text{stat.}) \pm 0.52 (\text{syst.}) \pm 1.10 (\text{lumi.})$ $9.92 \pm 0.09 (\text{stat.}) \pm 0.31 (\text{syst.}) \pm 1.09 (\text{lumi.})$	10.44 ± 0.52
	$\ell \nu$	$9.95 \pm 0.07 (\text{stat.}) \pm 0.28 (\text{syst.}) \pm 1.09 (\text{lumi.})$	
	$e^+\nu$	$5.93 \pm 0.07 (stat.) \pm 0.36 (syst.) \pm 0.65 (lumi.)$	
W ⁺	$\mu^+ \nu$	$5.84 \pm 0.07 (\text{stat.}) \pm 0.18 (\text{syst.}) \pm 0.64 (\text{lumi.})$	6.15 ± 0.29
	$\ell^+\nu$	$5.86 \pm 0.06 (stat.) \pm 0.17 (syst.) \pm 0.64 (lumi.)$	
	$e^- \bar{\nu}$	$4.14 \pm 0.06 (\text{stat.}) \pm 0.25 (\text{syst.}) \pm 0.45 (\text{lumi.})$	
W^-	$\mu^-\bar{\nu}$	$4.08 \pm 0.06 (\text{stat.}) \pm 0.15 (\text{syst.}) \pm 0.45 (\text{lumi.})$	4.29 ± 0.23
	$\ell^- \bar{\nu}$	$4.09 \pm 0.05 (\text{stat.}) \pm 0.14 (\text{syst.}) \pm 0.45 (\text{lumi.})$	
	e^+e^-	$0.960 \pm 0.037 (\text{stat.}) \pm 0.059 (\text{syst.}) \pm 0.106 (\text{lumi.})$	
Z	$\mu^+\mu^-$	$0.924 \pm 0.031 (\text{stat.}) \pm 0.022 (\text{syst.}) \pm 0.102 (\text{lumi.})$	0.972 ± 0.042
	$\ell^+\ell^-$	$0.931 \pm 0.026 (\text{stat.}) \pm 0.023 (\text{syst.}) \pm 0.102 (\text{lumi.})$	

Source	W ⁺ (e)	W ⁻ (e)	W^{+}/W^{-} (e)	W/Z (e)
Lepton reconstruction & identification	5.1	5.1	5.2	3.0
Momentum scale & resolution	2.2	1.8	0.4	2.0
₽ _T scale & resolution	1.6	1.9	0.4	1.8
Background subtraction / modeling	1.1	1.5	0.7	1.3
PDF uncertainty for acceptance	0.9	1.5	1.7	0.9
Other theoretical uncertainties	1.3	0.9	1.3	1.0
Total	6.1	6.2	5.7	4.4

$W^{+}(\mu)$	$W^-(\mu)$	$W^{+}/W^{-}(\mu)$	$W/Z(\mu)$
1.5	1.5	2.8	0.9
0.3	0.3	0.3	0.1
0.4	0.4	0	$\setminus 0.4$
1.7	2.3	0.7	2,2
1.3	1.9	2.1	1.1
1.4	1.3	1.2	1.4
3.0	3.6	3.8	3.0
	1.5 0.3 0.4 1.7 1.3	1.5 1.5 0.3 0.3 0.4 0.4 1.7 2.3 1.3 1.9 1.4 1.3	1.5 1.5 2.8 0.3 0.3 0.3 0.4 0.4 0 1.7 2.3 0.7 1.3 1.9 2.1 1.4 1.3 1.2

Cross Sections

Ch	annel	$\sigma \times \mathcal{B}$ (nb)	NNLO (nb)
W	eν μν ℓν	$10.04 \pm 0.10 ({\rm stat.}) \pm 0.52 ({\rm syst.}) \pm 1.10 ({\rm lumi.})$ $9.92 \pm 0.09 ({\rm stat.}) \pm 0.31 ({\rm syst.}) \pm 1.09 ({\rm lumi.})$ $9.95 \pm 0.07 ({\rm stat.}) \pm 0.28 ({\rm syst.}) \pm 1.09 ({\rm lumi.})$	10.44 ± 0.52
W ⁺	$e^+ \nu$ $\mu^+ \nu$ $\ell^+ \nu$	$5.93 \pm 0.07 ({\rm stat.}) \pm 0.36 ({\rm syst.}) \pm 0.65 ({\rm lumi.})$ $5.84 \pm 0.07 ({\rm stat.}) \pm 0.18 ({\rm syst.}) \pm 0.64 ({\rm lumi.})$ $5.86 \pm 0.06 ({\rm stat.}) \pm 0.17 ({\rm syst.}) \pm 0.64 ({\rm lumi.})$	6.15 ± 0.29
W ⁻	$e^-\bar{v}$ $\mu^-\bar{v}$ $\ell^-\bar{v}$	$\begin{array}{c} 4.14 \pm 0.06 (\mathrm{stat.}) \pm 0.25 (\mathrm{syst.}) \pm 0.45 (\mathrm{lumi.}) \\ 4.08 \pm 0.06 (\mathrm{stat.}) \pm 0.15 (\mathrm{syst.}) \pm 0.45 (\mathrm{lumi.}) \\ 4.09 \pm 0.05 (\mathrm{stat.}) \pm 0.14 (\mathrm{syst.}) \pm 0.45 (\mathrm{lumi.}) \end{array}$	4.29 ± 0.23
Z	e ⁺ e ⁻ μ ⁺ μ ⁻ ℓ ⁺ ℓ ⁻	$0.960 \pm 0.037 ({\rm stat.}) \pm 0.059 ({\rm syst.}) \pm 0.106 ({\rm lumi.})$ $0.924 \pm 0.031 ({\rm stat.}) \pm 0.022 ({\rm syst.}) \pm 0.102 ({\rm lumi.})$ $0.931 \pm 0.026 ({\rm stat.}) \pm 0.023 ({\rm syst.}) \pm 0.102 ({\rm lumi.})$	0.972 ± 0.042

- Good agreement across channels
- Combine e & µ by maximizing a joint likelihood
 - Including statistical and correlated systematic errors
- Additionally quote cross-sections restricted to acceptance region
 - Transfer theoretical uncertainties from measurements → predictions

Channel	$\sigma \times \mathcal{B}$ in acceptance A (nb)	A	I
$W \rightarrow e \nu_e$	$6.04 \pm 0.06 (\text{stat.}) \pm 0.31 (\text{syst.}) \pm 0.66 (\text{lumi.})$	0.601 ± 0.005	
$W^+ ightarrow e^+ u_e$	$3.69 \pm 0.05 (\text{stat.}) \pm 0.22 (\text{syst.}) \pm 0.41 (\text{lumi.})$	0.622 ± 0.006	$p_{\mathrm{T}} > 20\mathrm{GeV}$
$W^- ightarrow e^- \overline{ u}_e$	$2.36 \pm 0.04 (stat.) \pm 0.14 (syst.) \pm 0.26 (lumi.)$	0.571 ± 0.009	$ \eta < 2.5$
$Z \rightarrow e^+e^-$	$0.460 \pm 0.018 (stat.) \pm 0.028 (syst.) \pm 0.051 (lumi.)$	0.479 ± 0.005	
$W \rightarrow \mu \nu_{\mu}$	$5.21 \pm 0.05 (stat.) \pm 0.15 (syst.) \pm 0.57 (lumi.)$	0.525 ± 0.006	
$W^+ \rightarrow \mu^+ \nu_\mu$	$3.16 \pm 0.04 (stat.) \pm 0.10 (syst.) \pm 0.35 (lumi.)$	0.541 ± 0.006	$p_{\mathrm{T}} > 20\mathrm{GeV}$
$W^- o \mu^- \overline{ u}_\mu$	$2.05 \pm 0.03 (stat.) \pm 0.06 (syst.) \pm 0.22 (lumi.)$	0.502 ± 0.006	$ \eta < 2.1$
$Z \rightarrow \mu^{+}\mu^{-}$	$0.368 \pm 0.012 (stat.) \pm 0.007 (syst.) \pm 0.040 (lumi.)$	0.398 ± 0.005	

 POWHEG acceptance after QED, basic cuts

Cross Section Ratios

Quantity		Ratio	NNLO
$R_{\rm W/Z}$	e μ ℓ	$10.47 \pm 0.42 (\mathrm{stat.}) \pm 0.47 (\mathrm{syst.})$ $10.74 \pm 0.37 (\mathrm{stat.}) \pm 0.33 (\mathrm{syst.})$ $10.64 \pm 0.28 (\mathrm{stat.}) \pm 0.29 (\mathrm{syst.})$	10.74 ± 0.04
R _{+/-}	e μ ℓ	$1.434 \pm 0.028 (\mathrm{stat.}) \pm 0.082 (\mathrm{syst.})$ $1.433 \pm 0.026 (\mathrm{stat.}) \pm 0.054 (\mathrm{syst.})$ $1.433 \pm 0.020 (\mathrm{stat.}) \pm 0.050 (\mathrm{syst.})$	1.435 ± 0.044

- Luminosity drops out in the ratio
- good agreement w/ NNLO

- Relative to theory ...
 - Systematic shift in cross sections observed, not in ratio
 - Presumably luminosity bias
 - Well covered by present uncertainties

Quantity Ratio (CMS/Theory)		Lumi. Uncertainty	
$\sigma \times \mathcal{B}$ W 0.953 ± 0.028 (exp.) ± 0.048 (theo.) 0.953 ± 0.029 (exp.) ± 0.045 (theo.)			
			±0.11
UXB	W^-	0.954 ± 0.034 (exp.) ± 0.051 (theo.)	10.11
	Z	0.960 ± 0.036 (exp.) ± 0.040 (theo.)	
$R_{W/Z}$		0.990 ± 0.038 (exp.) ± 0.004 (theo.)	nil
$R_{+/-}$		1.002 ± 0.038 (exp.) ± 0.028 (theo.)	1111

Systematic Uncertainties

Source	$W \rightarrow e \nu$	$W \rightarrow \mu \nu$	$Z \rightarrow e^+e^-$	$Z \rightarrow \mu^+ \mu^-$
Lepton reconstruction & identification	3.9	1.4	5.9	n/a
Pre-triggering	n/a	0.5	n/a	0.5
Momentum scale & resolution	2.0	0.3	0.6	0.2
₽ _T scale & resolution	1.8	0.4	n/a	n/a
Background subtraction / modeling	1.3	2.0	0.1	1.0
PDF uncertainty for acceptance	0.8	1.1	1.1	1.2
Other theoretical uncertainties	1.3	1.4	1.3	1.6
Total	5.1	3.1	6.2	2.3

Statistical (%)

1.0

0.9

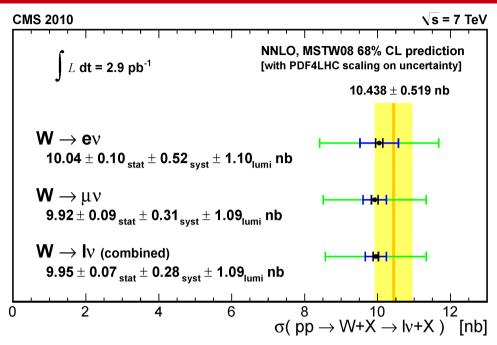
3.9

3.4

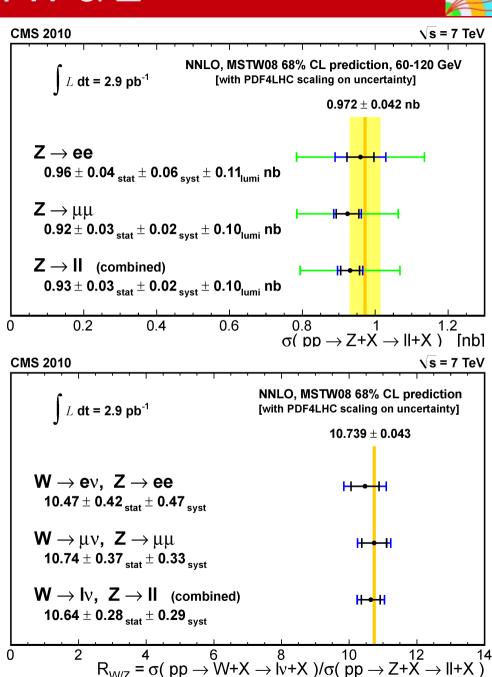
- W cross-section limited by signal/background modeling and lepton efficiency measurements
- Z cross-section limited by statistics and systematics from lepton efficiency

Systematics Uncertainties (2)

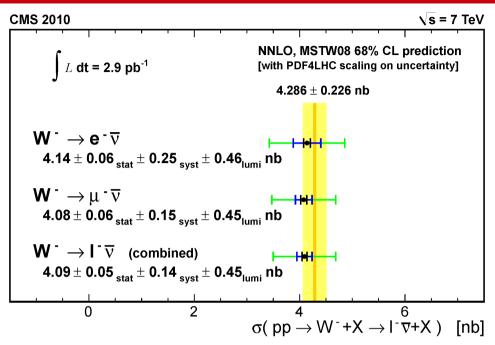
Source	W ⁺ (e)	W ⁻ (e)	W^{+}/W^{-} (e)	W/Z (e)
Lepton reconstruction & identification	5.1	5.1	5.2	3.0
Momentum scale & resolution	2.2	1.8	0.4	2.0
₽ _T scale & resolution	1.6	1.9	0.4	1.8
Background subtraction / modeling	1.1	1.5	0.7	1.3
PDF uncertainty for acceptance	0.9	1.5	1.7	0.9
Other theoretical uncertainties	1.3	0.9	1.3	1.0
Total	6.1	6.2	5.7	4.4

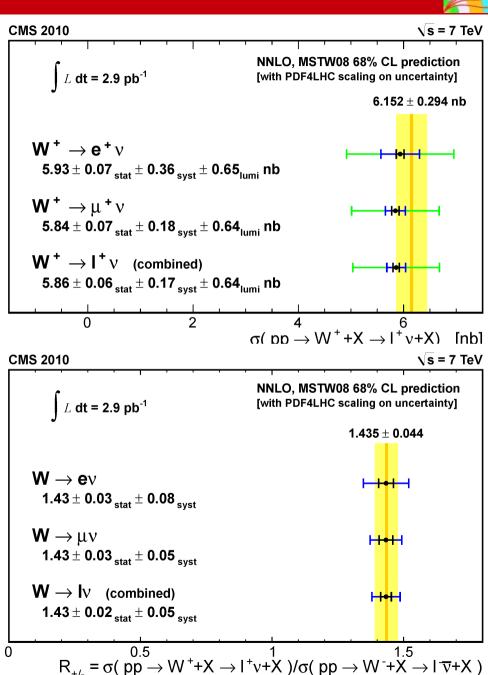

Source	$W^{+}(\mu)$	$W^{-}(\mu)$	$W^{+}/W^{-}(\mu)$	$W/Z(\mu)$
Lepton reconstruction & identification	1.5	1.5	2.8	0.9
Momentum scale & resolution	0.3	0.3	0.3	0.1
₽ _T scale & resolution	0.4	0.4	0	0.4
Background subtraction / modeling	1.7	2.3	0.7	2.2
PDF uncertainty for acceptance	1.3	1.9	2.1	1.1
Other theoretical uncertainties	1.4	1.3	1.2	1.4
Total	3.0	3.6	3.8	3.0

- W+ W- ratio limited by ratio of lepton efficiencies
 - Determined from statistically limited sample of Z
- W/Z ratio limited by BG model and lepton efficiencies

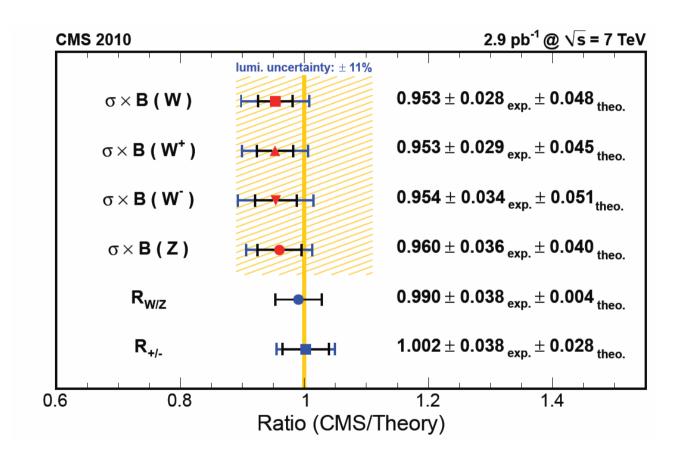

Graphical W & Z

W cross section non-lumi error 2.9% Z cross section non-lumi error 3.9% W/Z ratio total error 3.8%

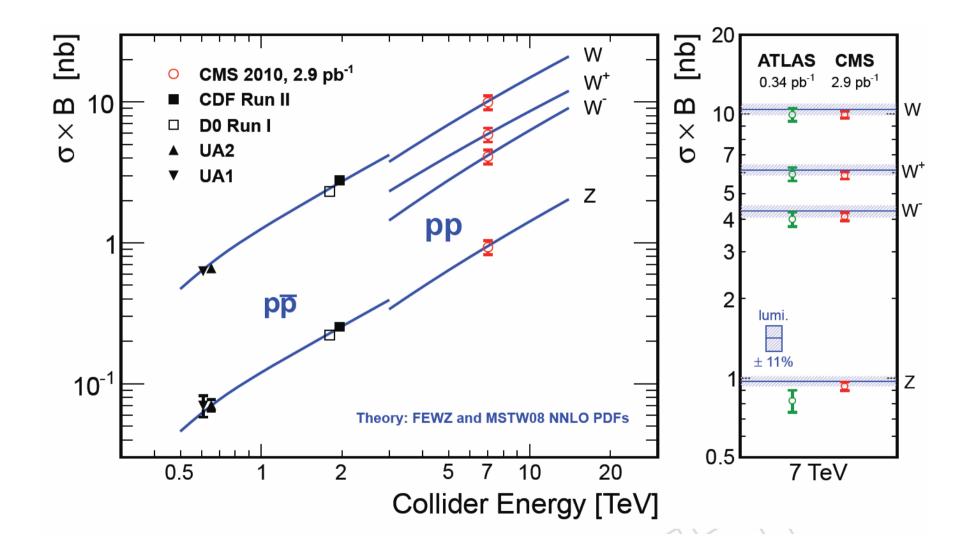

Internally consistent across channels Everywhere close to systematics limited



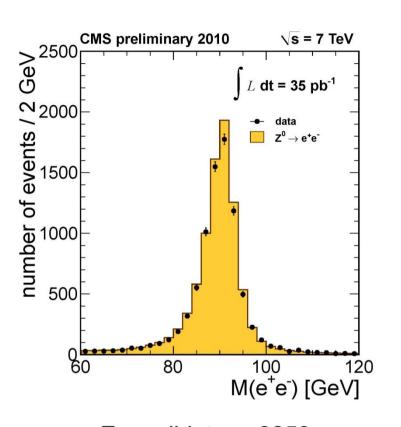
Graphical W+ & W-

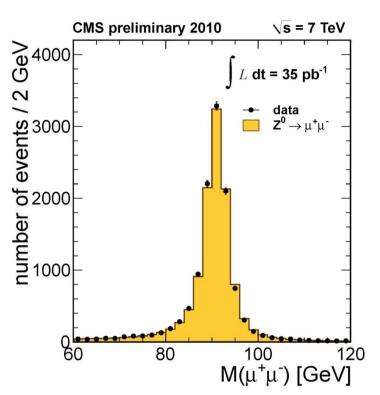

- W+ and W- consistent with PDF expectations
- Close to challenging global PDF precision!
- Limited primarily by +/efficiency ratio (Z statistics)

Results vs Theory



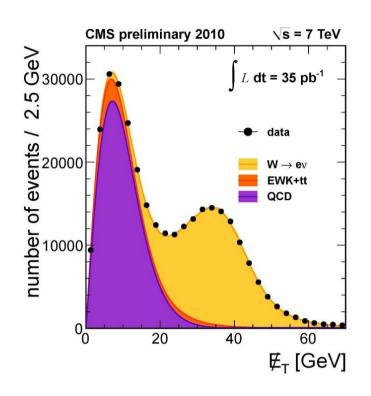
Cross Section vs Collision Energy

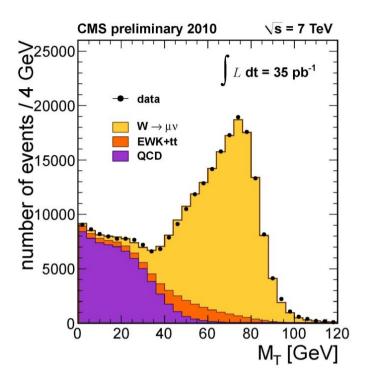




Preview : $Z \rightarrow II$ with 35 pb-1

Z candidates: 8253


Z candidates: 11697


- Observed candidates agree with expectations (within old systematics)
- Dimuon candidates exhibit excellent first pass scale and resolution
- Dielectron candidates require ECAL crystal transparency correction
 - In progress EB,EE-averaged rescaling shown here

Preview: W \rightarrow Iv with 35 pb-1

First pass fit: 161k Ws

W+ yield: 98156

W- yield: 62714

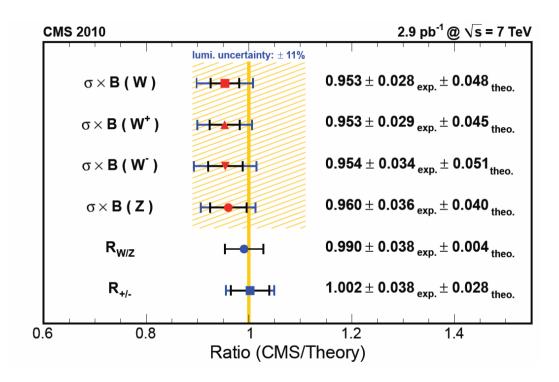
First pass fit: 144k Ws

W+ yield: 87884

W- yield: 56912

- Observed candidates agree with expectations (within old systematics)
- Updated recoil corrections to W signal, electron energy scale
 - Method continues to give an excellent description of data

The Road Ahead


- Target experimental precision of 2% (non-lumi)
 - Then theory error from acceptance dominates
 - 2% is a x2 improvement in uncertainties
- Key systematics to reduce
 - Lepton efficiency
 - Signal and background shapes for passing and failing samples
 - Some improvement expected from better statistics
 - Background modeling for W → Iv
- Other improvements will be required ...
 - Efficiencies and corrections in finer binning
 - Simultaneous fit for efficiencies extended to electrons

Conclusions

- Just eight months into its first 7 TeV collision run, CMS has achieved
 4% precision tests of electroweak physics.
- Electrons, muons, and missing energy are wellcalibrated detector objects ready for precision analysis.
- Extraordinary performance by detector operations, computing, detector simulation, and physics objects groups made this possible.

 W and Z production rates are already superior estimators of integrated luminosity and real time detector performance.