# Improving the thermoelectric properties of Half Heusler compounds

Di Wu

March 31th, 2011



## Outlines

Introduction of thermoelectrics and applications

## •TE properties improvement via:

- Seebeck coefficient
- Thermal conductivity
- Bulk Half Heusler with nano-inclusions
- Nanostructured HH and Predictions

## Seebeck Effect

 Temperature gradient deducing Voltage gradient or vice visa

 $S=-\Delta V/\Delta T$ 

- Thermal conductivity: к
- Dimensionless figure of Merit: ZT=  $S^2T/\rho\kappa$
- Efficiency- the higher ZT is, the closer the efficiency of TE circuit getting to Carnot Engine.



$$\eta = \frac{T_{H} - T_{C}}{T_{H}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + \frac{T_{C}}{T_{H}}}$$

## Semiconductor is the best TE material

- α = Seebeck coefficient
- σ = Electrical Conductivity
- $\lambda$  = Thermal Conductivity
- Power factor combined with thermal conductivity shows semiconductor is the best choice for TE materials  $ZT = \alpha^2 \sigma T / \lambda$



## **Thermoelectrics Applications**





ALUMINUM OUTER SHELL ASSEMBLY



**Thermoelectric Cooler** 

## State of the Art TE materials (n-type)



## State of the Art TE materials (p-type)



## Half Heusler alloys

Ti-Ni-<mark>S</mark>n



Ti and Sn atoms forms a rock salt structure and Ni atoms fill half of the hollows at the center of Ti-Sn cubic.

Pros: Easy preparation, mulitiple doping options, non-toxic, high electrical conductivity Cons: comparably high thermal conductivity

#### Band Structure of MNiSn



## How can we improve the properties of Thermoelectric materials

K<sub>e</sub>= L \* σ \* T

$$ZT = \frac{S^2 T}{\rho \varkappa} = \frac{S^2}{L_e + \frac{\varkappa_L \rho}{T}}$$

 $L_e$  – electrical Lorentz number  $\varkappa_L$  – Lattice thermal conductivity  $\rho$  – electrical resistivity



## resonant states



Doping isovalent atoms with higher/lower electronegativity to resonate with corresponding conduction(n-type)/valence band edge of the majority component.

## **Energy Filtering**



Carriers which have lower energy than  $\epsilon_{\rm b}$  are greatly scattered

Calculated normalized seebeck distribution vs electron energy for heavily doped bulk n-type Si<sub>80</sub>Ge<sub>20</sub> at RT. Low energy electrons contribute negatively to the Seebeck coefficient. This is also one of the motivation of our nano-inclusions bulk materials.

## Thermal conductivity

thermal conductivity  $\kappa_{\rm T} = \kappa_{\rm C} + \kappa_{\rm e} + \kappa_{\rm p}$ 

photon contribution  $\kappa_p$  negligible electronic contribution  $\kappa_e$ 

#### Wiedemann–Franz law

 $K_{e}\text{=}$  L \*  $\sigma$  \* T , where L is Lorentz number L=2.44\*10^{-8} W\*\Omega^{\*}K^{-2}

Lattice contribution  $\kappa_c$  *is exactly what we are working on.....* 

## LatticeTC model

$$\begin{split} & \textit{Callaway's Lattice TC} \qquad \kappa_{\text{C}} = \frac{k_{\text{B}}}{2\pi^{2}v} \left(\frac{k_{\text{B}}T}{\hbar}\right)^{3} \int_{0}^{\theta/_{\text{T}}} \tau_{\text{C}}(x,T) \frac{x^{4}e^{x}}{(e^{x}-1)^{2}} dx \\ & \textit{relaxation time} \qquad \tau_{\text{C}}^{-1} = \tau_{\text{I}}^{-1} + \tau_{\text{U}}^{-1} + \tau_{\text{B}}^{-1} \\ & \textit{where :} \qquad x = \frac{\hbar\omega}{k_{\text{B}}T} \\ & \textit{Impurity scattering} \qquad \tau_{\text{I}}^{-1} = A\omega^{4} \\ & \textit{Umklapp scattering} \qquad \tau_{\text{U}}^{-1} = B_{\text{U}}T^{3}\omega^{2} \\ & \textit{Boundary scattering} \qquad \tau_{\text{B}}^{-1} = v/L \end{split}$$



ρ is the volume density of the nano-inclusions

This is TC of various silicide nanoparticles (0.8% volume fraction) into  $Si_{50}Ge_{50}$  main matrix at T=300K:

1) TC decrease greatly even with small fraction of nanoinclusions.

2) It is not necessary to make accurate nanoparticle size control

### Preparing bulk HH with nano-inclusions

2% ZrO<sub>2</sub> nanoparticles dispersed Hf<sub>0.3</sub>Zr<sub>0.7</sub>CoSn<sub>0.3</sub>Sb<sub>0.7</sub>



Main Matrix preparation

ZrO<sub>2</sub> nanoparticles involving

Clemson University, SC







#### X-Ray Pattern as proof of existence of ZrO2



## SEM and TEM in process....

#### SEM and EDS

*SEM* is used to determine the gain size of the main matrix as well as existence of ZrO<sub>2</sub> nano-inclusions.

*EDS* is used to determine HH compound's uniform distribution as well as rough chemical composition.

#### SEM

Providing accurate proof for nano-inclusions existence as well as information of their grain size and position in main matrix

### Higher naonparticles dispersion level will further decrease TC



#### Nano-structure instead of nano-inclusions?

#### How about ball milling the main matrix over hours?

#### grinding the main matrix to nano-scale?

|                 | Main matrix grains | Inclusion grains | Ball milling time |
|-----------------|--------------------|------------------|-------------------|
| Nano-inclusions | Micron scale       | Nano scale       | <5 mins           |
| Nano-structure  | Nano scale         | Nano scale       | hours             |

Investigation in process.....

1) Prevent oxidization while ball milling

2) Prevent contamination from the vial itself



Further decreasing in thermal conductivity shows nano-structure bulk more promising than nano-inclusions bulk.

#### Further predictions.....



 $k/k_{\rm h}$  - Lattice TC of nano-structured Half Heusler alloy normalized to the reference regular bulk alloy

w - the size range of the particles

#### What ZT can we expect from this theoretical model?

$$\mathsf{ZT} = \frac{S^2 T}{\rho \varkappa} = \frac{S^2}{L_e + \frac{\varkappa_L \rho}{T}}$$

#### For N-type HH Hf0.6Zr0.4NiSn0.995Sb0.005 at 900K

| Grain size         | Lattice TC | ZT   |
|--------------------|------------|------|
| 20 to 100µm (bulk) | 1.10       | 0.91 |
| 100 to 200 nm      | 0.99       | 0.93 |
| 20 to 60 nm        | 0.704      | 0.99 |
| 5 to 25 nm         | 0.418      | 1.07 |

## Acknowledgement

- Many thanks to Dr. Poon for his work on lattice TC prediction for nanostructured Half Heusler
- Appreciate the help of Thermal conductivity measurement and SPS from Clemson University

Thanks for your attendance!