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Why study Rn-like Actinide lons”

"h%* is the most common charge state in
"horium chemistry

e Computation of Thorium compound

properties begin with the description of the
free ion.

* No prior experimental observations
— no optical spectroscopy!
— NO measurements of excited state lifetimes!

— no measurements of the significant dynamic
properties: dipole & quadrupole polarizabilities




Why study Rn-like Actinide lons?

 Measurements could check existing
calculations:

o, (Th*)
7.75 a.u. [1]
10.26 a.u. [2

2]
8.96 a.u. [3
7.699 a.u. [4]

[1] U. I. Safronova, W. R. Johnson, M. S. Safronova, Phys Rev A 76, 042604 (2007).

[2] S. Fraga, J. Karwowski, and K. M. S. Saxena, Handbook of Atomic Data (Elsevier, Amsterdam, 1976).
[3] A. Derevianko, private communication, (2010).

[4] A. Borschevsky and P. Schwerdtfeger, private communication, (2010).




High-L Rydberg Fine Structure:
What can it teach us?

A non-penetrating high-L Rydberg electron acts as a sensitive
probe of an ion’s long-range interactions, giving measurements
of the ion properties that control those interactions.
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What's a Typical Pattern?

n=38 levels in (Th3*)* Th**: 6s® 6p° 1S,
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(1) Beams of highly charged ions are created by the ECR and accelerated by +25 kV
(2) Beam of 100 keV Th#* is selected using a 20° analyzing magnet

(3) (Th3*)* beam is formed by charge capture from a Rydberg target

(4) (Th3*)* beam is separated from remaining Th** beam using a 15° analyzing magnet
(5) CO, laser excites transitions between specific high-L Rydberg states

(6) States excited by the CO, laser are ionized and detected




ECR lon Source Cologado
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e 14 GHz Permanent
magnet ECR ion
source

e Solid samples of Th
are sputtered in a Xe
atmosphere

* Microwave power
typically between 6
to14 W




Primary Beam Selection
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20° Magnet in conjunction with
a 2 mm aperture analyzes
beams by charge and mass

Mass resolution:

Velocity spread:




Rydberg

2 mm aperture

Rydberg target

Characteristic “blue
fluorescence” is the result of
transition from (n+1)D.,
state to 5P;, state
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Target
L

12F,,

4.08 eV
(a) 770 nm
(b) 756 nm
(c) 745 nm 12
(d) 737 nm 4.06 eV

4.04 eV

4.01 eV

L1 =780.24 nm
L2 =1529.37 nm

Thermal plume of Rb is excited to a
high nF state using 3 CW lasers.

Typically only 2% of the ion beam
captures a Rydberg electron
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Rydberg Target

® NCaptured 10F vs cross_section 10F
B NCaptured 12F vs cross_section 12F
A NCaptured 14F vs cross_section 14F
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Charge Transfer beam selection

* Following the Rydberg target is a 15° mass and
charge analyzing magnet.

 This magnet is used to separate the ion beam that
captured a Rydberg electron from the remaining
primary beam, significantly reducing the
background in our detector.




Pre-ionization cotogado
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All Dimensians in Inches

e Typical fields:
o Pre-ionizing lens 1: ~4500 V/cm @ 10.5 kV
o Pre-ionizing lens 2: ~3800 V/cm @ 4.0 kV




Background removal and signal Cologado
enhancement by Pre-lonization tat
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Background removal and signal Cologado
enhancement by Pre-ionization tat
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» Depletes very high n
populations

* lonizes very weakly
bound Rydberg states,

{ reducing the background in
1 our detector

30 40 50 60 70 90 100 110

final n of capture




CO]O{taa(%g

— University;

Resonant Excitation

ZnSe Window

CO, Laser ‘

lon beam

Mirror & Post
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Resonant Excitation Cologado

~ University

By smoothly varying 4. the Doppler tuned
frequency is varied through the resonant
transition frequency between high-L Rydberg
states, allowing for partial resolution of the
Rydberg fine structure.

=73, L >

« Excitation is upwards so L'=L + 1 is allowed




(X)l(){taa(%g

— University;

Resonant Excitation (an example)

Th3+ (37, 8) — (73, 9) O (4€0)

71.0 70.5 : 69.5 69.0 68.5 68.0

Full Width Half M ax:
Frequency: 273(14) MHz
Intersection Angle: 0.61(3) deg

v, = 952.8809 cm-!
E0 = 953.0579 cm!

NZadi\P1k a8

5000

The x-axis is the difference between the CO, laser’s Doppler-tuned frequency
and the hydrogenic transition frequency between then=37and n’' =73
Rydberg levels in Th3*,
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Resonant Excitation (an example)

Th3* (37, 8) — (73, 9) P (d€9)

71.0 70.5 . 69.5 69.0 68.5
| | | | | |

Full Width Half Max:
Frequency: 273(14) MHz
Intersection Angle: 0.61(3) deg

v, = 952.8809 cm-!
E0 = 953.0579 cm!

—~
%]
=
c
>
o
—
©
~
o
c
2
n

WZ2ad\\gza al

T
5000

The x-axis is the difference between the CO, laser’s Doppler-tuned frequency
and the hydrogenic transition frequency between then=37and n’' =73

Rydberg levels in Th3*,




Resonant Excitation: G()l(){ado
Why use a CO, laser? 2
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Stark lonization and Detection %2
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 \When ionization occurs In the Stark lonizer
the kinetic energy of the ions is changed by:

This “energy tags” the ions formed in the
Stark ionizer. Differentiating these ions from

lons that are of similar charge formed by
other processes.




Energy Tagging in the detector “¥
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:Calculated Signal Th** Regenerated

:Deflection Potential / Primary Beam
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Terminal Potential: +25.0 kV P4 Potential: -6.0 kV
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What's a Typical Pattern?

Th*: 65 6p° 'S, N=38 levels in (Th3*)*
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What do we expect to see?

Simulated (Th*")* n = 37 - 73 RESIS excitation spectrum
” e Only showing AL = +1
+— High-L peak
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(Th3*)* Fine Structure Observations (X)l°§taa(t1é)

University:

100 keV Th IV n=37-73

Signal x'1
Signal'x'10
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High-L Peak

Amplitude

2000 3000 4000

AE = v, - E° (MHz)




(Th3*)* Fine structure observations

 Observed transition energies

Transition

Hlnt

U, -AE°
(MHZz)

AEStark
(MHZz)

AEObS
(MHZz)

(37, 7)-(76, 8

67.926(88)

8094(39

-1(1)

8095(39

(37, 10) — (73, 11)

75.850(24)°

1415(11)

1(1)

1414(11)

(37,9) - (73, 10)

73.836(26)°

2341(11)

1(1)

2340(11)

(37,8)—(73,9)

69.786(18)°

4189(8)

1(1)

4188(8)

(37,7)— (73, 8)

60.918(58)°

8046(24)

-2(2)

8048(24)

(38, 10) — (79, 11)

106.776(28)

1335(13)

1(1)

1334(13)

(38, 9) — (79, 10)

104.898(24)

2186(12)

2(2)

2184(12)

(38,8)—(79,9)

101.168(34)

3892(16)

3(3)

3892(16)
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Rydberg Level Energy Deviations: (X)l(){a(l()
How they are related to the properties of the ion core? tate

~ University

 Energy deviations can be described using the “Long Range Polarization”
model
« The weak interaction of the Rydberg electron with the ion core is
treated as a small perturbation to the energy of the Rydberg electron.

« Two key assumptions:
1) Rydberg electron is distinguishable from all other electrons
2) Rydberg electron never penetrates the space of the ion core

* Non-relativistic Hamiltonian for the full system, ignoring spin:




Rydberg Level Energy Deviations:
How they are related to the properties of the ion core?

N

ignore temporarily

Ignoring V, Hamiltonian is a sum of two terms:

Zeroth order wave function for the system:

e Zeroth order core wave function is unknown
« Zeroth order Rydberg wave function is hydrogenic

Zeroth order energies:



Rydberg Level Energy Deviations:
How they are related to the properties of the ion core?

* Recall the small perturbation V:

* Re-write using multipole expansion:

* Non-penetrating states:

monopole term vanishes because:




Rydberg Level Energy Deviations: (X)l(){a(l()
How they are related to the properties of the ion core? tate

~ University

* Apply time independent perturbation theory:

Elll =0 for 1S, cores




Rydberg Level Energy Deviations: (X)l(){a(l()
How they are related to the properties of the ion core? tate

— University:

* Use time independent perturbation theory:

Elll =0 for 1S, cores




Rydberg Level Energy Deviations: (X)l(){a(l()
How they are related to the properties of the ion core? tate

~ University

* Inthe limit that AEg 4 << AE !

Use the “Adiabatic Expansion”




Rydberg Level Energy Deviations: Colorado
How they are related to the properties of the ion core? tate

D iversity

* Apply the adiabatic expansion ...

... and skip a lot of algebra:




Rydberg Level Energy Deviations: (X)l(){a(l()
How they are related to the properties of the ion core? tate

— University:

o Skip a lot more algebra:

Effects of the interaction of the Rydberg electron with the ion core can be
described as a sum of a few parameters and simple radial expectation
values!!!




Rydberg Level Energy Deviations: (X)l(){a(l()
How they are related to the properties of the ion core? tate

~ University

e Energy for the full system can be written as:

o Effective Potential:




Rydberg Level Energy Deviations: (X)l(){a(l()
How they are related to the properties of the ion core? tate

~ University

 Energy that | can be written as:

o Effective Potential:




Th** Polarizability

 The observed energy difference between Rydberg levels:

* Neglects two important contributions:

e Energy contributions due to the kinetic energy of
the electron:

 Application of V4 in 2" order: E?is computed using the

analytical formula developed
by Drake and Swainson.




Th** Polarizability cologato
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 The observed energy difference between Rydberg levels:

[1] G. W. F. Drake and R. A. Swainson, Phys. Rev. A 44, 5448 (1991).




Th** Polarizability cologato
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e |solate AE!l:

Transition AE©bs AE[ AE'® AE]
(n,L)—(n", L)  (MH2) (MHz) (MHz)  (MHz)

(37, 7)-(76,8) | 8095(39)| 38.626(365) 89.1  7968(3

(37, 10)- (73, 11 | 1414(11 0.876(14 57.E | 1356(11

(37,9) - (73, 10) | 2340(11) 2.695(43) 65. 2277(1

(37,8)—(73,9) | 4188(8) 0.403(149]  75. 4103(8

(37,7)—(73,8) | 8048(24)| 38.479(61Q) 87. 7922(2

(38, 10) — (79, 11)| 1334(13) 0.816(13) 54, 1279(1

(38,9) — (79, 10) | 2184(12) 2.508(40) 62. 2117(1

(38,8)—(79,9) | 3892(16)| 8.739(139]  71. 3809(1




Th** Polarizability colae
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* |solating AEl amounts to isolating contributions
due to V4

e Scale by A<r4>:

Looks like a line if we ignore higher order terms!
Intercept = a,/2




Th** Polarizability

n = 38 — 79 transitions
| n= 37 — 73 transitions
n =37 — 76 transition

=13.0(L.9) a.u.

0.005 0.010

A<r®>/A<rs>




(Th3*)* Fine Structure Observations “ G

— University:
100 keV Th IV n=37-73

* Clear pattern of resolved
transitions Is not enough
to identify the transitions.

S
E
©
c
2
[4)]

* Rely on theoretical estimates or prior optical spectroscopy
observations of lower lying states

e U. I. Safronova theoretical estimate
o ay="T./5a.u.
o accurate within a factor of 2.

 P.F. Klinkenberg (sparse) optical spectroscopy [1]
o Highest n, L state observed in Th3*: 5g

[1] P. F. A. Klinkenberg, Physica B+C (Utrecht) 151, 552 (1988).




Th4* Polarizability ol
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All 3 choices of L values can be fit using polarization model.

Increase L by 1 unit

59 state observed by Klinkenberg
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Th** Polarizability

n = 38 — 79 transitions
| n= 37 — 73 transitions
n =37 — 76 transition

~ ad = 3.806(29) a. 6761(69
ag— ,Bd

=13.0(L.9) a.u.

0.005 0.010

A<r®>/A<rs>




Th4* Conclusions

Theoretically Comparison of
Th4* Core  Experimentally Determined value Theory to
Property determined value (a.u.) (a.u.) Experiment

10.261] 1.348(11)
8.96!2 1.177(9)
7.753] 1.018(8)
7.6991 1.012(8

a, - 64, 26(4) - -
B, - 3.1(2)1
as 45(4) 2915] 1.55(14)

a, 7.61(6)

[1] S. Fraga, J. Karwowski, and K. M. S. Saxena, Handbook of Atomic Data (Elsevier Scientific Pub., Amsterdam, 1976).
[2] A. Derevianko, private communication, (2010).

[3] U. I. Safronova, W. R. Johnson, and M. S. Safronova, Phys. Rev. A 76, 042504 (2007).

[4] A. Borschevsky and P. Schwerdtfeger, private communication, (2010).

[5] M. Safronova, private communication, (2010).




Th4* Conclusions

Theoretically Comparison of
Th4* Core  Experimentally Determined value Theory to
Property determined value (a.u.) (a.u.) Experiment

Gy 7B, 7.758 1.018(8)

7.699M4] 1.012(8

Relativistic methods seem to be very close to my observations!

[1] S. Fraga, J. Karwowski, and K. M. S. Saxena, Handbook of Atomic Data (Elsevier Scientific Pub., Amsterdam, 1976).
[2] A. Derevianko, private communication, (2010).

[3] U. I. Safronova, W. R. Johnson, and M. S. Safronova, Phys. Rev. A 76, 042504 (2007).

[4] A. Borschevsky and P. Schwerdtfeger, private communication, (2010).

[5] M. Safronova, private communication, (2010).




Th4* Conclusions

Theoretically Comparison of
Th4* Core  Experimentally Estimated value Theory to
Property determined value (a.u.) (a.u.) Experiment

26(4) -
N 3.1(2)6!
45(4) 2915] 1.55(14)

Not sure why the discrepancy here. Terms proportional to <r8>, that were
neglected in the linear fit to the data, could be important.

[5] M. Safronova, private communication, (2010).




Th4* Conclusions

Theoretically Comparison of
Th4* Core  Experimentally Determined value Theory to
Property determined value (a.u.) (a.u.) Experiment

10.261] 1.348(11)
8.96!2 1.177(9)
7.753] 1.018(8)
7.6991 1.012(8

a, - 64, 26(4) - -
B, - 3.1(2)1
as 45(4) 2915] 1.55(14)

a, 7.61(6)

[1] S. Fraga, J. Karwowski, and K. M. S. Saxena, Handbook of Atomic Data (Elsevier Scientific Pub., Amsterdam, 1976).
[2] A. Derevianko, private communication, (2010).

[3] U. I. Safronova, W. R. Johnson, and M. S. Safronova, Phys. Rev. A 76, 042504 (2007).

[4] A. Borschevsky and P. Schwerdtfeger, private communication, (2010).

[5] M. Safronova, private communication, (2010).




g
W/
LN
K SH7
RANT
) (’/’




Rydberg Level Energy Deviations: Colorado
How they are related to the properties of the ion core? tate

D iversity

e Use the multipole expansion:




Rydberg Level Energy Deviations: (X)l(){a(l()
How they are related to the properties of the ion core? tate

~ University

e Define properties of the ion core in terms of the
dipole and quadrupole operators:

<«———— Dipole polarizability

<+———— Quadrupole polarizability

First non-adiabatic correction to the
Dipole polarizability




