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Neutrinoless Double-Beta Decay

• 2!"":

• Slowest nuclear process allowed in SM

• Observable when " decay forbidden

• Observed in #10 isotopes
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Double-Beta Decay 
and Neutrino Mass
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Dark Matter

• Fritz Zwicky’s 
missing mass
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Dark Matter

• Fritz Zwicky’s 
missing mass

• Galaxy rotation 
curves

• Gravitational 
Lensing

• Cosmic microwave 
background

• The Bullet Cluster
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Challenges and Goals
• Low rates

• Low energies

• Background 
rejection

230 km/s
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MAJORANA and 
CLEAN/DEAP

Overview and Strategy



Why 0!"" 76Ge?
• Intrinsic HPGe detectors are also the source

• Excellent energy resolution: 0.16% at 2039 keV 
(4 keV Region of Interest)

• Powerful background rejection: segmentation, 
timing, pulse-shape discrimination

• Demonstrated enrichment: 7.44% to '86%

• Matrix elements better understood than most

•  76Ge has the current best limit:

T!0! > 1.9 x 1025 y (90% CL)
H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147, (2001)



MAJORANA and GERDA

• enrGe in LAr

• Water cherenkov $ veto

• Phase I: ~18 kg (H-M/IGEX xtals)

• Phase II: +20 kg segmented xtals

2.0 m

~100 liter Dewar 

Service Body 

Cross arm 
Cryostat 

• Modular enrGe arrays in electro-
formed Cu Cryostats

• E-formed Cu/Pb passive shielding

• 4( plastic scintillator $ veto
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2.0 m
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Service Body 

Cross arm 
Cryostat 

• Modular enrGe arrays in electro-
formed Cu Cryostats

• E-formed Cu/Pb passive shielding

• 4( plastic scintillator $ veto

Open collaboration 
and exchange of ideas...
Plans to merge for ton-

scale experiment!!!



MAJORANA DEMONSTRATOR
• Primary goal: show 

background levels for ton-
scale MAJORANA

• 60-kg HPGe detectors (~half 
enriched)

• Focus on p-type point-contact 
detectors

• Located at Sanford Lab (4850 
level of Homestake mine)
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Different Models!
• What do I mean by “Models???”

• A particular combination of M and ! 

for a set of "" isotopes that predict a 

a rate #0$

• This work focused on seven models...

• Light neutrino exchange, matrix 
elements from Nucl. Phys.  A, 766, 107

• Light neutrino exchange, matrix 
elements from Nucl. Phys A, 729, 867

• Light neutrino exchange, matrix 
elements calculated from in shell 
model (various references)

• Heavy neutrino exchange, matrix 
elements from Phys. Rev. C, 60, 
055502

• SUSY, matrix elements from Phys. Rev. 
D, 58, 115004

• Two right-handed current models 
from Z. Phys. 334, 187

If the uncertainty on these predictions is 
good enough, we can tell these models 

apart!

Figure adapted from J. Phys. G 34 667
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MAJORANA Design

Detector Mounts and Strings



MAJORANA Design

Cryostats



MAJORANA Design

Shielding and Calibration



• Copper Electro-forming, detector facilities, and machine shop in one 
campus at 4850’ level (new drift to Davis cavity for LUX)

• Excavation underway--beneficial occupancy soon!

• Temporary lab for Copper Electro-forming near Ross Shaft

MAJORANA Site Facilities
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WIMP Dark Matter

• No particle in the Standard Model of Particle 
Physics explains dark matter

• Supersymmetric models predict a Lightest 
Supersymmetric Particle -- also known as a 
Weakly Interacting Massive Particle (WIMP)

• Could be a neutralino (mixture of the Z, ) and 
Higgs super-partners) 

• Thermal relics, Mass ~ 10 GeV - 1 TeV

• *A ~ Electroweak scale



WIMP Dark Matter

We have realized a novel approach 
for the direct detection of dark 
matter using scintillation light from 
single phase detectors of LAr and 
LNe.  We have developed a 
conceptually simple and economic 
means to achieve the multi-ton 
scale necessary to detect and study 
WIMP dark matter.



What to do?

Energy (Channel 1)

E
n
er

gy
 (

C
h
an

n
el

 2
)

Bac
kg

ro
un

ds

Signal



What to do?
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Progress Requires Scalable, 
“Background-Free” Detectors

Events / 10 kg year

Events / 100 kg year

Events / 1000 kg year



Single-Phase Noble Liquid

• Noble liquids have singlet and triplet excited states

• For argon and neon, decay times for these states are 
different and long enough to provide discrimination 
between electronic and nuclear recoils

• Electronic recoils result in more triplet states so more 
late light

Electronic recoil ())

Nuclear recoil (neutron)

PMT pulses in LAr
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Background Discrimination

M.G.Boulay and A.Hime, Astroparticle Physics 25, 179 (2006) 
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So we built DEAP-1...

• Development of liquid Argon methods

• Demonstrate pulse shape discrimination experimentally

• Develop background reduction techniques

• Dark matter sensitivity to #10-44 cm2 at 100 GeV

• A 7-kg, single-
phase LAr 
detector 

• Built and run at 
Queen’s 
University then 
SNOLab
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So we built DEAP-1...
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MAJORANA and 
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The CLEAN and DEAP 
Family of Detectors

DEAP-0:
Initial R&D detector

DEAP-1:
7 kg LAr
2 warm PMTs
At SNOLab 2008

pico-CLEAN:
Initial R&D detector

Micro-CLEAN:
4 kg LAr or LNe
2 cold PMTs
surface tests at Yale

Mini-CLEAN:
400 kg LAr or LNe (150 kg fiducial mass)
92 cold PMTs
At SNOLab mid-2010DEAP-3600:

3600 kg LAr (1000 kg fiducial mass)
266 cold PMTs
At SNOLab late 2010

50-tonne LNe/LAr Detector:
pp-solar !, supernova !, dark matter <10-46 cm2

At DUSEL ~2012

10-44 cm2

10-45 cm2

10-46 cm2

WIMP * 
Sensitivity
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Cube Hall at SNOLAB 



SNOLAB Cube Hall

MiniCLEAN
anchors

MiniCLEAN
top access

10T gantry crane
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top access



SNOLAB Cube Hall

MiniCLEAN
anchors

MiniCLEAN
top access

10T gantry crane

DEAP-3600
top access

Insert Detector Here



Personnel 
facilities 

SNO 
Cavern 

Ladder Labs 

Cube Hall 

Cryopit 

Utility 
Area 

South 
Drift 

Phase III 
Stub 

Utility 
Drift 



CLEAN/DEAP Collaboration
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Students), Engineers and Technicians
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• Background Modeling: Alexis Schubert 
(B8.00003)

• Inelastic Neutron Scattering: Melissa 
Boswell (B8.00008)

• Enriched Germanium Activation: Vince 
Guiseppe (B8.00009)

• Internal Conversions in GEANT4: Chao 
Zhang (B8.00010)

• Data Acquisition: Graham Giovanetti 
(G8.00010)

• Low-Energy Science Program: Michael 
Miller (P10.00003)

• Custom Low-Background BEGe: Padraic 
Finnerty (Y10.00004)
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• Background Modeling: Alexis Schubert 
(B8.00003)

• Inelastic Neutron Scattering: Melissa 
Boswell (B8.00008)

• Enriched Germanium Activation: Vince 
Guiseppe (B8.00009)

• Internal Conversions in GEANT4: Chao 
Zhang (B8.00010)

• Data Acquisition: Graham Giovanetti 
(G8.00010)

• Low-Energy Science Program: Michael 
Miller (P10.00003)

• Custom Low-Background BEGe: Padraic 
Finnerty (Y10.00004)

MAJORANA R&DFrom my APS talk ~2 weeks ago...



• Background Modeling: Alexis Schubert 
(B8.00003)

• Inelastic Neutron Scattering: Melissa 
Boswell (B8.00008)

• Enriched Germanium Activation: Vince 
Guiseppe (B8.00009)

• Internal Conversions in GEANT4: Chao 
Zhang (B8.00010)

• Data Acquisition: Graham Giovanetti 
(G8.00010)

• Low-Energy Science Program: Michael 
Miller (P10.00003)

• Custom Low-Background BEGe: Padraic 
Finnerty (Y10.00004)

MAJORANA R&D



• Background Modeling: Alexis Schubert 
(B8.00003)

• Inelastic Neutron Scattering: Melissa 
Boswell (B8.00008)

• Enriched Germanium Activation: Vince 
Guiseppe (B8.00009)

• Internal Conversions in GEANT4: Chao 
Zhang (B8.00010)

• Data Acquisition: Graham Giovanetti 
(G8.00010)

• Low-Energy Science Program: Michael 
Miller (P10.00003)

• Custom Low-Background BEGe: Padraic 
Finnerty (Y10.00004)

MAJORANA R&D



• Background Modeling: Alexis Schubert 
(B8.00003)

• Inelastic Neutron Scattering: Melissa 
Boswell (B8.00008)

• Enriched Germanium Activation: Vince 
Guiseppe (B8.00009)

• Internal Conversions in GEANT4: Chao 
Zhang (B8.00010)

• Data Acquisition: Graham Giovanetti 
(G8.00010)

• Low-Energy Science Program: Michael 
Miller (P10.00003)

• Custom Low-Background BEGe: Padraic 
Finnerty (Y10.00004)

MAJORANA R&D



• Background Modeling: Alexis Schubert 
(B8.00003)

• Inelastic Neutron Scattering: Melissa 
Boswell (B8.00008)

• Enriched Germanium Activation: Vince 
Guiseppe (B8.00009)

• Internal Conversions in GEANT4: Chao 
Zhang (B8.00010)

• Data Acquisition: Graham Giovanetti 
(G8.00010)

• Low-Energy Science Program: Michael 
Miller (P10.00003)

• Custom Low-Background BEGe: Padraic 
Finnerty (Y10.00004)

MAJORANA R&D



• Background Modeling: Alexis Schubert 
(B8.00003)

• Inelastic Neutron Scattering: Melissa 
Boswell (B8.00008)

• Enriched Germanium Activation: Vince 
Guiseppe (B8.00009)

• Internal Conversions in GEANT4: Chao 
Zhang (B8.00010)

• Data Acquisition: Graham Giovanetti 
(G8.00010)

• Low-Energy Science Program: Michael 
Miller (P10.00003)

• Custom Low-Background BEGe: Padraic 
Finnerty (Y10.00004)

MAJORANA R&D



• Background Modeling: Alexis Schubert 
(B8.00003)

• Inelastic Neutron Scattering: Melissa 
Boswell (B8.00008)

• Enriched Germanium Activation: Vince 
Guiseppe (B8.00009)

• Internal Conversions in GEANT4: Chao 
Zhang (B8.00010)

• Data Acquisition: Graham Giovanetti 
(G8.00010)

• Low-Energy Science Program: Michael 
Miller (P10.00003)

• Custom Low-Background BEGe: Padraic 
Finnerty (Y10.00004)

MAJORANA R&D



•P-type = simpler to fabricate/handle/instrument

•Compact electrode geometry increases drift 
times--clearly indicates multiple-site events

MAJORANA Detectors: PPC



•P-type = simpler to fabricate/handle/instrument

•Compact electrode geometry increases drift 
times--clearly indicates multiple-site events

•Similar background rejection to highly-segmented 
detectors without added complexity/backgrounds

Barbeau et al., JCAP 
09 (2007) 009

Luke et al.,  IEEE trans. 
Nucl. Sci. 36 , 926 (1989)

MAJORANA Detectors: PPC



•P-type = simpler to fabricate/handle/instrument

•Compact electrode geometry increases drift 
times--clearly indicates multiple-site events

•Similar background rejection to highly-segmented 
detectors without added complexity/backgrounds

•Very low energy threshold (sub keV) allows for 
additional physics reach (e.g. dark matter, axions)

Barbeau et al., JCAP 
09 (2007) 009

Luke et al.,  IEEE trans. 
Nucl. Sci. 36 , 926 (1989)

MAJORANA Detectors: PPC
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• Broad Energy Ge (BEGe) detectors

• PPC-like detectors, 7 cm (dia.) x 3 cm

• Our BEGes have some modifications from standard

The BEGe’s

First 18 in hand,
More being ordered 

this year!



All detectors are 
in hand and have been 

examined for 
acceptance!

Good Results
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MAJORANA and 
CLEAN/DEAP

Recent R&D Progress



Detector Response R&D

Argon/
Neon

EUV Light

TPB

Down-
scatter

Visible 
Light

Acrylic 
More Ar/Ne

PMT

Charge

• PMT tests: dark current, gain, QE vs. Temperature

• TPB tests: fluorescence efficiency, emission spectrum 
vs. EUV wavelength

• Optical Module Tests: mechanical and integration



Cold PMT Tests

• These tubes have already been 
tested down to 29K...

Journal of Instrumentation,
2 (2007), P11004

doi: 10.1088/1748-0221/2/11/P11004
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Cold PMT Tests

• These tubes have already been 
tested down to 29K...

• We will be able to carefully control 
the temperature of the PMT!

• This will allow us to do an 
extensive gain and efficiency vs. bias 
curve for several temperatures

• We plan to test many of the 
MiniCLEAN PMTs with this 
apparatus

• Will test roughly 10% of PMTs at 
4-5 temperatures

• One or two every ~10-20 K from 50-300 K

You should probably test 
your PMTs cold too...
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The Plan...

1. Pump out insulation 
vacuum and cold 
chamber

2. Fill cold chamber with 
cover gas

3. Cool down cold 
chamber with cold head

4. Adjust heating resistor 
to set temperature

5. Bias PMT and take data

Fiber optic 
feedthroughs

Insulation 
Vacuum

PMT

Cold 
Chamber

Cold Head

Heating 
Resistor

Xe Flash lamp
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TPB Fluorescence
Since we are observing individual photons, we care about 

the efficiency as a ratio of photon rates.

ε(λUV) =
Rvis

RUV
=

Ivis(λUV) 4π
Ωvis

∫
dλvis STPB

1
C(λvis)hc/λvis

IUV(λUV) 4π
ΩUV

1
C(λUV)hc/λUV

Photodiode
(inside shield)Deuterium 

Lamp

Monochromator

Filt
er W

heel
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Fluorescence Efficiency

PRELIM
IN

ARY!!!

Why the turn 
up at short +?

Film thicknesses 
not quite right...
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Input wavelength 
dependence?



Conclusions

•There are LOTS of frontiers in particle 
physics!

•We’ve talked about a comparatively rare 
and quiet one today…

•MAJORANA and CLEAN are world-leading 
low-background experiments, with far-
reaching physics implications

•This is a very exciting time for low-
background physics



Thank you 
for your attention!


