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Rare Events and Physics BSM

® Departures from the standard model generally revolve
around searches for small effects on top of a “sea of
backgrounds”™

The “Needle in a

Haystack” Problem
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Neutrinoless Double-Beta Decay
o 2v[(R:

® Slowest nuclear process allowed in SM
® Observable when B decay forbidden
® Observed in = |0 isotopes

pp
Q =2.039 MeV




Neutrinoless Double-Beta Decay
o 2v[(R:

® Slowest nuclear process allowed in SM
® Observable when B decay forbidden
® Observed in = |0 isotopes

e OVPP:
® No emitted neutrinos!
® Demands: B
® Majorana Neutrino Q=2.059 MeV
® | epton number non-conservation
® Non-zero neutrino mass
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Signature will be mono-
energetic peak in e sum
spectrum at the 2V[3f3
endpoint, Qg = 2.039 MeV




Double-Beta Decay

and Neutrino Mass

Amaim <45 meV

Amsoi=9 meV

| —

Normal
Hierarchy Inverted

Hierarchy

OVRP is sensitive to {(mgp), and therefore

the absolute masses, mixings and CP phases



Dark Matter
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Dark Matter

T T T ]

Clowe

NGC 6503 j ® Fritz Zwicky’s
missing mass

{"iﬁmﬁ-mﬁtﬁﬁﬁﬁ#{
f R L halo

® (alaxy rotation
curves

;.'_l__J_L_l_'_L_—__¢--_;
10 20
Radius (kpc)




, Dark Matter

® Fritz Zwicky’s
missing mass

® (alaxy rotation
curves

Distant Galaxy Lensed by Cluster Abell 2218  HST « WFPC2 » ACS
v = n

® Gravitational
Lensing

- .
ESA, NASA, J.-P. Kneib (Caltech/Observatoire Midi-Pyrénées) and R. Ellis (Caltech)) STScl-PRC04-08



Dark Matter
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Dark Matter

® Fritz Zwicky’s
missing mass

® (alaxy rotation
curves

® Gravitational
Lensing

® Cosmic microwave
background

® [he Bullet Cluster
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energy transferred appears in
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Challenges and Goals

® | ow rates

® | ow energies

® Background
rejection

WIMP
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Why OVBP 76Ge?

® |ntrinsic HPGe detectors are also the source

® Excellent energy resolution: 0.16% at 2039 keV
(4 keV Region of Interest)

® Powerful background rejection: segmentation,
timing, pulse-shape discrimination

® Demonstrated enrichment: 7.44% to >86%
® Matrix elements better understood than most

® /5Ge has the current best limit:
T,V > 1.9x 10>y (90% CL)

H.V. Klapdor-Kleingrothaus et al., Eur. Phys. ].A 12, 147, (2001)



MAJORANA and GERDA
S "

R'n shroud
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® Modular ""Ge arrays in electro- ® °"Ge in LAr
formed Cu Cryostats ® Water cherenkov U veto
°
°

® E-formed Cu/Pb passive shielding Phase I: ~18 kg (H-M/IGEX xtals)

® 411 plastic scintillator Y veto Phase |l: +20 kg segmented xtals
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MAJORANA DEMONSTRATOR

® Primary goal: show
background levels for ton-
scale MajorANA

® 60-kg HPGe detectors (~half
enriched)

® Focus on p-type point-contact T -

detectors S
® Located at Sanford Lab (4850
level of Homestake mine)
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MAJORANA Sensitivity
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MAJORANA Sensitivity
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Different Models!

® What do | mean by “Models???”

® A particular combination of M and 1)
for a set of B3 isotopes that predict a
a rate 'O



Different Models!

® What C|O | mean b), “Mode|s777” Model Predictions for Different Double Beta Decay Mechanisms

x10%7

If the uncertainty on these predictions is

good enough, we can tell these models @ QRPASE) Figure adapted from J.Fhys. G 34 667
apart! 30 |mareag)
SM
This work focused on seven models... W Heavy v
Light neutrino exchange, matrix 23/ susv —
elements from Nucl. Phys. A, 766, |07 WRHCn
A RHC-

Light neutrino exchange, matrix 20
elements from Nucl. Phys A, 729, 867

Light neutrino exchange, matrix
elements calculated from in shell
model (various references)

15

Heavy neutrino exchange, matrix 10

elements from Phys. Rev. C, 60,
055502

il -l

T 1T 1 | | I I | T T 1 I T 1T 1 | | | T T 1 I |
: ——

SUSY, matrix elements from Phys. Rev. S

D, 58, 115004 a ° - -
Two right-handed current models 0 76| 82| mol 116| 130| 136?
from Z. Phys. 334, 187 Ge Se Mo Cd Te Xe

BB Isotope
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Detector design
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MAJORANA Site Facilities

® Copper Electro-forming, detector facilities, and machine shop in one

campus at 4850’ level (new drift to Davis cavity for LUX)
® Excavation underway--beneficial occupancy soon!
® Temporary lab for Copper Electro-forming near Ross Shaft

MAJORANA Lab (—CONSTRUCTIONT A
“Transition Space” B\ 4

100’
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WIMP Dark Matter

® No particle in the Standard Model of Particle
Physics explains dark matter

® Supersymmetric models predict a Lightest
Supersymmetric Particle -- also known as a
Weakly Interacting Massive Particle (VWWIMP)

® Could be a neutralino (mixture of the Z, Y and
Higgs super-partners)

® [Thermal relics, Mass ~ |0 GeV - | TeV

® Oa ~ Electroweak scale



WIMP Dark Matter

We have realized a novel approach
for the direct detection of dark
matter using scintillation light from
single phase detectors of LAr and

LNe. We have developed a
conceptually simple and economic
means to achieve the muliti-ton
scale necessary to detect and study
WIMP dark matter.
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What to do?
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What to do?
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Progress Requires Scalable,
“Background-Free” Detectors

Events / 10 kg year

Events / 100 kg year
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Single-Phase Noble Liquid

Late Photon\

Early Photon\A

ent from Na-22 run with 67 prompt pe, Fprompt = 0.31

Electronic recoil (Y)

time {ns}

" PMT pulses in LAr

Nuclear recoil (neutron)

o

® Noble liquids have singlet and triplet excited states

® For argon and neon, decay times for these states are
different and long enough to provide discrimination
between electronic and nuclear recoils

® Electronic recoils result in more triplet states so more
late light



Background Discrimination

-t
o

Prompt/singlet

light (T = 6 ns) —— electrons

nuclear recolls
|1/13=~3.0

Relative probability

b
<

Late/triplet

10 10° 10°

M.G.Boulay and A.Hime, Astroparticle Physics 25, 179 (2006)



Background Discrimination
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Background Discrimination
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So we built DEAP-I...

acrylic vacuum chamber
glass window LAr target chamber

acrylic light gulde o-ring seal
ETL 5"PMT A PMT B

e A 7-kg, single-
phase LAr
detector

¢ Built and run at
Queen’s
University then
SNOLab

Development of liquid Argon methods

Demonstrate pulse shape discrimination experimentally
Develop background reduction techniques

Dark matter sensitivity to = 10%* cm? at 100 GeV










So we built DEAP-I...
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MAJORANA and

Detector design



The CLEAN and DEAP
Family of Detectors

DEAP-0: pico-CLEAN:

Initial R&D detector Initial R&D detector

DEAP-I: Micro-CLEAN:

7 kg LAr 4 kg LAr or LNe

2 warm PMTs 2 cold PMTs

At SNOLab 2008 surface tests at Yale
Mini-CLEAN:
400 kg LAr or LNe (150 kg fiducial mass)
92 cold PMTs

DEAP-3600: At SNOLab mid-2010

3600 kg LAr (1000 kg fiducial mass)
266 cold PMTs
At SNOLab late 2010

50-tonne LNe/LAr Detector:

pp-solar V, supernova Vv, dark matter <|0-4¢ cm?
At DUSEL ~2012



Building Mini-CLEAN

Vessel

Quter
Vessel




Building Mini-CLEAN

Inner
Vessel




Cylindrical
pieces

Bottom dome
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Building Mini-CLEAN
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Building Mini-CLEAN




Building Mini-CLEAN




!"‘

B

ol B y.\

-

b

'W» o

Building



o 10T Monorail
r . -

SN | Universal Interface

; \ and Device Insertion
’ Gantry _ MRS HIN | Assembly

| Cranes / Clean Room

MiniCLEAN
Shield Tank}

5

l
DEAP/CLEA . -

Shield Tank

.

DEAP/CLEAN
Process Systems

£



5 ) s

Cube HalimoLAB

<ol ,.1

= fh¢ Ly o L

L @mm ,4? »

i / l . - - - J :
-i‘l W 2 I\\\\"\‘\\\\\\\\\-

/ N o ‘e v . . L5 ety
; ‘(__ z,." ,tt { : _i:u ‘:a‘v;; -~

- , ‘l’ J e a l bt -t *

— = —— —




i
= |0T gantry crane




Mln;CLEAN

/ 4
'@ahchors WA
' AW J g JA —’-‘
"/..‘.‘“’ 3 »
v :







CLEAN/DEAP Collaboration

University of Alberta University of North Carolina
Aksel Hallin Reyco Henning
Boston University University of Pennsylvania
Ed Kearns Josh Klein
Carleton University Queens University
Kevin Graham Mark Boulay and Art McDonald
Harvard University University of South Dakota
John Doyle Dongming Mei
Los Alamos National Laboratory SNOLab
Andrew Hime Fraser Duncan
MIT Syracuse University
Joe Formaggio and Jocelyn Monroe Richard Schnee
NIST - Boulder TRIUMF
Kevin Coakley Fabrice Retrieve
University of New Mexico Yale University
Dinesh Loomba Dan McKinsey

|6 Institutions with ~80 Participants
Institutional Representitives, Scientists (Postdocs and
Students), Engineers and Technicians
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MAJORANA R&D

Background Modeling: Alexis Schubert
(B8.00003)

Inelastic Neutron Scattering: Melissa
Boswell (B8.00008)

Enriched Germanium Activation:Vince
Guiseppe (B8.00009)

Internal Conversions in GEANT4: Chao
Zhang (B8.00010)

Data Acquisition: Graham Giovanetti
(G8.00010)

Low-Energy Science Program: Michael
Miller (P10.00003)

Custom Low-Background BEGe: Padraic
Finnerty (Y 10.00004)
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Background Modeling: Alexis Schubert
(B8.00003)

Inelastic Neutron Scattering: Melissa
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Counts/keV

Enriched Germanium Activation:Vince
Guiseppe (B8.00009)

Internal Conversions in GEANT4: Chao
Zhang (B8.00010)

Data Acquisition: Graham Giovanetti
(G8.00010)

Low-Energy Science Program: Michael
Miller (P10.00003)

Custom Low-Background BEGe: Padraic
Finnerty (Y 10.00004)

Counts/keV

1987.2 2971 204pp

MAJORANA R&D

2000

2016.7 “Ge

O
[a
©
o
Y
~—
<
o
Al

2050
Energy (keV)

2054 207pp

2093 74Ge 206,207Pb

2103.5 °Ge

6.7 - 12.5 MeV neutrons

3050
Energy (keV)

3100




MAJORANA R&D

Background Modeling: Alexis Schubert : | : ;
o] © £ 88 S Activated "°Ge
(B8000O3) TR, S Background

Inelastic Neutron Scattering: Melissa
Boswell (B8.00008)

Enriched Germanium Activation:Vince
Guiseppe (B8.00009)

Internal Conversions in GEANT4: Chao
Zhang (B8.00010)

Data Acquisition: Graham Giovanetti
(G8.00010)

Low-Energy Science Program: Michael
Miller (P10.00003)

Custom Low-Background BEGe: Padraic
Finnerty (Y 10.00004)




MAJORANA R&D

Background Modeling: Alexis Schubert
(B8.00003)

Inelastic Neutron Scattering: Melissa
Boswell (B8.00008)

Enriched Germanium Activation:Vince
Guiseppe (B8.00009)

Internal Conversions in GEANT4: Chao
Zhang (B8.00010)

Data Acquisition: Graham Giovanetti
(G8.00010)

Low-Energy Science Program: Michael
Miller (P10.00003)

Custom Low-Background BEGe: Padraic
Finnerty (Y 10.00004)



MAJORANA R&D

Background Modeling: Alexis Schubert
(B8.00003)

Inelastic Neutron Scattering: Melissa
Boswell (B8.00008)

. typical ~1 kg ULB
Conventiona coaxial HPGe

Enriched Germanium Activation:Vince . 17' HPGe | (TWIN detectors)

Guiseppe (B8.00009) of i Y Dotectr

Do

0.5 kg ppc HPGe

Internal Conversions in GEANT4: Chao
Zhang (B8.00010)

300 eV threshqld,
working on J
100 eV threshPld , shen BE *"Ge EC)

>
<
o
o0
=
(o))
=4
~
n
o
o
—
o}
o
(&)

Cu K-shell BE (*Zn EC) 10.36 keV

8.98 keV
D A ° _°.° N G h G‘ o - (50% involve E =1115 keV)

ata ch|S|t|on. ranam lovanetti . \
aa ,]-S 1€ V]
(G8 OOO I O) / 8 Ge EC) Zn K-shell BE (**%"%Ga EC)
* = 9.66 keV B
' Ge K-shell BE ("°As EC)
11.10 keV

Low-Energy Science Program: Michael . L.__J_.“__..
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Custom Low-Background BEGe: Padraic
Finnerty (Y 10.00004)
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MAJORANA Detectors: PPC

®P-type = simpler to fabricate/handle/instrument

® Compact electrode geometry increases drift
times--clearly indicates multiple-site events

Ch1d 100mY Q Ch2d 100mY Q M 400ns 1.25GS/s 800psht
A& Ch1 ~ -120mY

Chis 100mY Q Ch2¢ 100mY Q M 400ns 1.25GS4 S00psht
& Chl ~ -120mY



counts / 0.8 keV

Luke et al., IEEE trans.
Nucl. Sci. 36 , 926 (1989)

MAJORANA Detectors: PPC

®P-type = simpler to fabricate/handle/instrument

Barbeau et aI.,JCAP ® Compact electrode geometry increases drift

09 (2()()7) 009 times--clearly indicates multiple-site events

e Similar background rejection to highly-segmented
detectors without added complexity/backgrounds
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MAJORANA Detectors: PPC

®P-type = simpler to fabricate/handle/instrument

Barbeau et aI.,JCAP ® Compact electrode geometry increases drift
09 (2()()7) 009 times--clearly indicates multiple-site events
Luke et al., IEEE trans. e Similar background rejection to highly-segmented
Nucl Sci. 36 . 926 (|989) detectors without added complexity/backgrounds

® Very low energy threshold (sub keV) allows for
additional physics reach (e.g. dark matter, axions)

I 1 T T T I T T T T I T L} -

_ typical ~1kg ULB 3
Conventiona coaxial HPGe 3
S T o HPGe (TWIN detectors) 3

E noise Detector

F  threshold

mostly multiple-site single-site (DEP) : /
interaction interaction B

= Raw Th spectrum )

After TFA peak count + width cut

—

N

L

[« T 1T [} T & & % bk

PPC HPGe 0.5 kg ppc HPGe
300 eV threshaqld, i
working on
100 eV threshPld ¢, k.sheli BE (%G EC)

Cu K-shell BE (*Zn EC) 10.36 keV

8.98 keV
(50% involve E =1115 keV)
Ga l,l-shvll BE \
/ 87 Ge EC) Zn K-shell BE (**%"%*Ga EC)

counts / 0.8 keV

counts / keV kg day

1.29 keV 9.66 keV

Ge K-shell BE (?PAs EC) ]
11.10 keV i

1.55 1.6 1.65 \ —
. . . 5 10
1onization energy (MeV) energy (keVee)
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® Broad Energy Ge (BEGe) detectors
® PPC-like detectors, 7 cm (dia.) x 3 cm

® QOur BEGes have some modifications from standard
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The BEGe’s

® Broad Energy Ge (BEGe) detectors
® PPC-like detectors,Z cm (djz 3c

e OurB

First 18 in hand, 2

L
NGMll .

More being ordered
messays_ this year!

BEGE DETECTOR
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_ 08 I | . '. . .
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Good Results

All detectors are
in hand and have been

examined for
acceptance!
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Leakage currents vary from:0.5 - 17.0 pA
Capacitances from: 1.0 - |.8 pF
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Good Results

Leakage currents vary from:0.5 - 17.0 pA
Capacitances from: 1.0 - |.8 pF
FWHM at 1332.5 keV from: 1.6 - 2.5 keV

First nine detectors out of their cryostats in storage
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Crycstat R&D

® Ve came into somg
detectors and use g
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MAJORANA and

Recent R&D Progress



Detector Response R&D

Down- Visible

scatter  Light Charge

EUV Light

Late Photon\
Early Photon—_ A

Argon/ Acrylic
Neon TPB More Ar/Ne il

® PMT tests: dark current, gain, QE vs. Temperature

® TPB tests: fluorescence efficiency, emission spectrum
vs. EUV wavelength

® Optical Module Tests: mechanical and integration



Cold PMT Tests

® These tubes have already been Journal of Instrumentation,

tested down to 29K... 2 (2007),P11004
doi: 10.1088/1748-0221/2/11/P1 1004




Control! Control! You
must learn control!!!

These tubes
tested down to 29

We will be able to carefully control
the temperature of the PMT!
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You should probably test
your PMTs cold too...

These tubes
tested down to 29

We will be able to carefully control
the temperature of the PMT!

This will allow us to do an
extensive gain and efficiency vs. bias
curve for several temperatures

We plan to test many of the
MiniCLEAN PMTs with this
apparatus

® Will test roughly 10% of PMTs at
4-5 temperatures

® One or two every ~|10-20 K from 50-300 K
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The Plan...

Insulation Fiber optic
|. Pump out insulation Vacuum feedthroughs
vacuum and cold
chamber
Xe Flash lamp
2. Fill cold chamber with
cover gas PMT
3. Cool down cold
chamber with cold head
4. Adjust heating resistor Cold Head
to set temperature Heating
Resistor

5. Bias PMT and take data




Initial Dark Current
Measurements

®Can cool down to ~100 Kg#
with ~ | Atm. N2 cover §
gas, bias PMT’s take data--
DARK CURRENT!

® Neon cover gas to /5 K, having breakdown problems, so
cannot run PMTs, no dark current anyway...

® MiniCLEAN PMTs showed up September 23!!!



Initial Dark Current
Measurements

®Can cool down to ~100 Kg#
with ~ | Atm. N2 cover §
gas, bias PMT’s take data--
DARK CURRENT!

Hopefully lower soon! °

® Neon cover gas to /75 Ky having breakdown problems, so
cannot run PMTs, no dark current anyway...

® MiniCLEAN PMTs showed up September 23!!!
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Initial Dark Current
Measurements

®Can cool down to ~100 Kg#
with ~ | Atm. N2 cover §
gas, bias PMT’s take data--
DARK CURRENT!

® Neon cover gas to /5 K, having breakdown problems, so
cannot run PMTs, no dark current anyway...



TPB Fluorescence

Since we are observing individual photons, we care about
the efficiency as a ratio of photon rates.

Lis(Auv) éj | dAvis STPBm
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Raw Lamp Spectrum
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Sensor Current

=== Prediction

Sensor Current (nA)
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Fluorescence Efficiency

0.11 mg/cm” TPB
0.22 mg/cm” TPB
0.33 mg/cm” TPB
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Fluorescence Efficiency

Film thicknesses # 0.11 mg/cm’ TPB
not quite right... 0.22 mg/cm’ TPB
0.33 mg/cm” TPB
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Fluorescence Efficiency

Film thicknesses 0.11 mg/cm* TPB
not quite right... 0.22 mg/cm’ TPB

0.33 mg/cm” TPB
Why the turn
up at short A?
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TPB Emission Spectrum

TPB Visible Spectrum 185 nm Wavelength Incident Light
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TPB Emission Spectrum

TPB Visible Spectrum 185 nm Wavelength Incident Light
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Conclusions

® There are LOTS of frontiers in particle
physics!

® VWe've talked about a comparatively rare
and quiet one today...

® MAJORANA and CLEAN are world-leading
low-background experiments, with far-
reaching physics implications

® This is a very exciting time for low-
background physics







