Reorganizing the QCD pressure at intermediate coupling

Michael Strickland

Gettysburg College and Frankfurt Institute for Advanced Studies (FIAS)

Collaborators: Nan Su (FIAS) and Jens Andersen (NTNU)

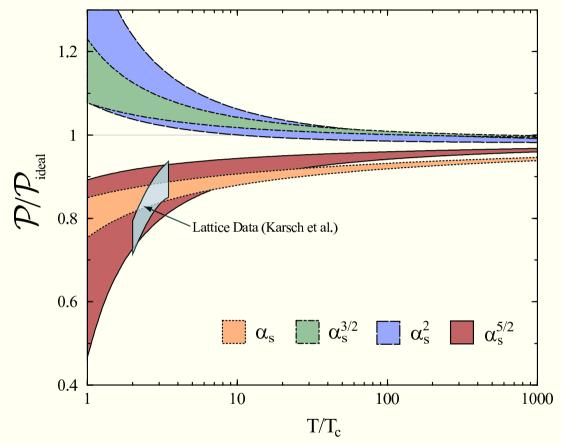
Reference: arXiv:0906.2936 and forthcoming

University of Virginia, Charlottesville, VA 27 Oct 2009

Introduction - Heavy Ion Collisions \rightarrow QGP or QGL?

- RHIC has made extensive studies of the matter generated during heavy ion collisions, $T_0 \sim 400 \text{ MeV} \sim 2 T_c$.
- LHC will continue this investigation at even higher temperatures, $T_0 \sim 800\text{-}1000 \text{ MeV} \sim 4 5 T_c$.
- Early RHIC data hinted that the perturbative approach was insufficient to explain observations, and that a strongly-coupled nearly perfect liquid may be more appropriate. LHC?
- Should we be surprised since at RHIC and LHC the running coupling expected is $g_s \sim 2$ or $\alpha_s \sim 0.3$?
- Strong coupling limit has some very nice features, but $g_s \ll \infty$.
- Can perturbative QCD results reproduce lattice data thermodynamic functions at such "intermediate" couplings $(g_s \sim 2)$?

Introduction - Perturbative Thermodynamics

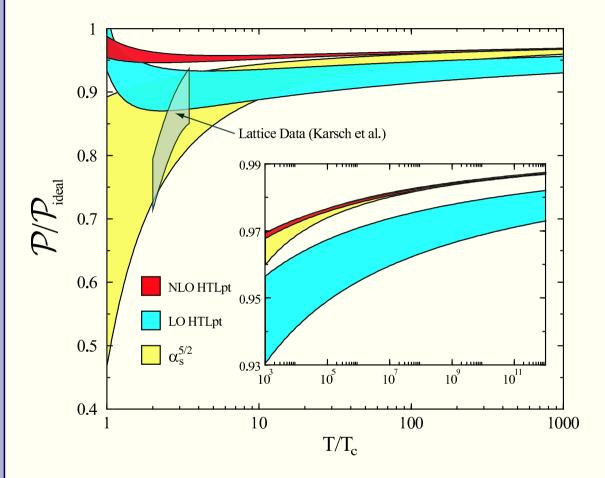


Perturbative QCD free energy vs temperature. ($\pi T \leq \mu \leq 4\pi T$) QCD with $N_c = 3$ and $N_f = 2$. 4-d lattice results from Karsch et al, 03.

(Here
$$\alpha_s = g_s^2/4\pi$$
)

- The weak-coupling expansion of the QCD free energy, \mathcal{F} , has been calculated to order $\alpha_s^3 \log \alpha_s$. ^{1,2,3,4}
- At temperatures expected at RHIC energies, $T \sim 0.3 \text{ GeV}$, the running coupling constant $\alpha_s(2\pi T)$ is approximately 1/3, or $g_s \sim 2$.
- The successive terms contributing to \mathcal{F} can strictly only form a decreasing series if $\alpha_s \lesssim 1/20$ which corresponds to $T \sim 10^5$ GeV.
 - ¹ Arnold and Zhai, 94/95.
 - ² Kastening and Zhai, 95.
 - ³ Braaten and Nieto, 96.
 - ⁴ Kajantie, Laine, Rummukainen and Schröder, 02.

Introduction - NLO HTLpt result



LO and NLO HTLpt free energy of QCD with $N_c = 3$ and $N_f = 2$ together with the perturbative prediction accurate to g^5 .

- Hard-thermal-loop (HTL) perturbation theory ^{4,5} is a systematic, self-consistent and gauge-invariant reorganization of thermal quantum fields.
- Hard-thermal-loop perturbation theory is formulated in Minkowski space, therefore it is in principle possible to carry out real time calculations.
- Interested in $T > 2 3 T_c$.

⁴ Andersen, Braaten, Strickland, 99/99/99.

⁵ Andersen, Braaten, Petitgirard, Strickland, 02; Andersen, Petitgirard, Strickland, 03.

But there is still work to do!

- Problems remain:
 - $\circ g^4$ and g^5 terms can't be fully fixed at NLO.
 - For example, when the NLO HTLpt is expanded in a truncated series in g, it is found that the g⁵ term has approximately the right magnitude, but the wrong sign when comparing to the known weak-coupling expansion.
 - Running coupling doesn't enter at NLO. At this order, running coupling needs to be put in by hand.
- Can be fixed by going to NNLO.

Time to roll up your sleeves ...

Anharmonic Oscillator

• Consider the perturbation series for the ground state energy, *E*, of a simple anharmonic oscillator with potential

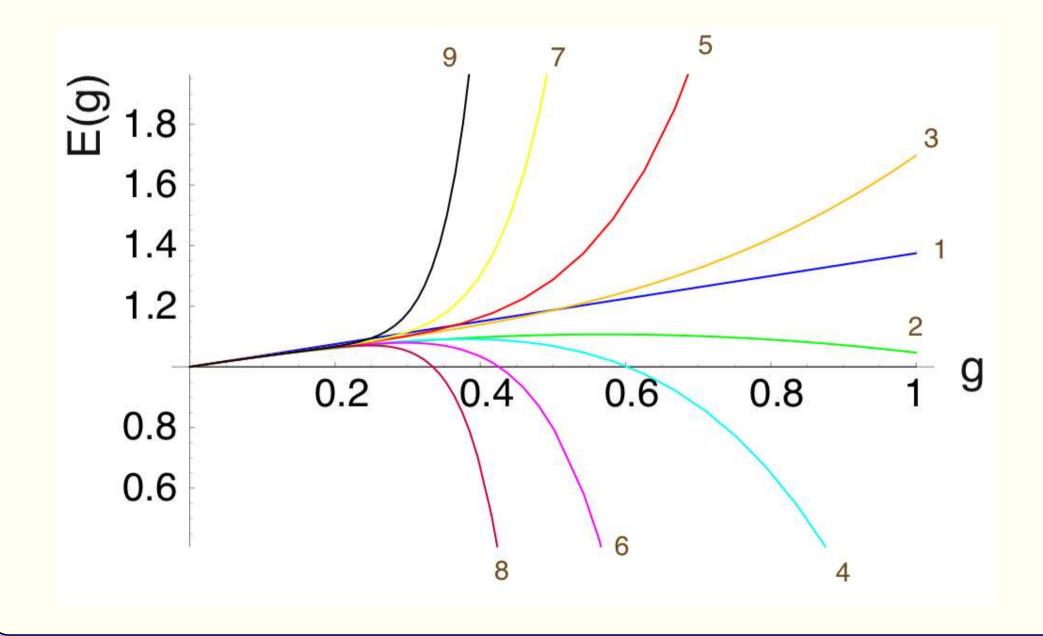
$$V(x) = \frac{1}{2}\omega^2 x^2 + \frac{g}{4}x^4 \quad (\omega^2, g > 0)$$

• Weak-coupling expansion of the ground state energy E(g) is known to all orders (Bender and Wu 69/73)

$$E(g) = \omega \sum_{n=0}^{\infty} c_n^{\text{BW}} \left(\frac{g}{4\omega^3}\right)^n, \quad c_n^{\text{BW}} = \left\{\frac{1}{2}, \frac{3}{4}, -\frac{21}{8}, \frac{333}{16}, -\frac{30885}{16}, \dots\right\}$$

- $\lim_{n \to \infty} c_n^{\text{BW}} = (-1)^{n+1} \sqrt{\frac{6}{\pi^3}} 3^n (n \frac{1}{2})!$
- Because of the factorial growth, the expansion is an asymptotic series with zero radius of convergence!

Anharmonic Oscillator



Variational Perturbation Theory (Janke and Kleinert 95/97)

 Split the harmonic term into two pieces and treat the second as part of the interaction

$$\omega^2 \to \Omega^2 + \left(\omega^2 - \Omega^2\right) \implies E_N(g, r) = \Omega \sum_{n=0}^N c_n(r) \left(\frac{g}{4\Omega^3}\right)^n$$

where $r \equiv \frac{2}{g} \left(\omega^2 - \Omega^2 \right)$

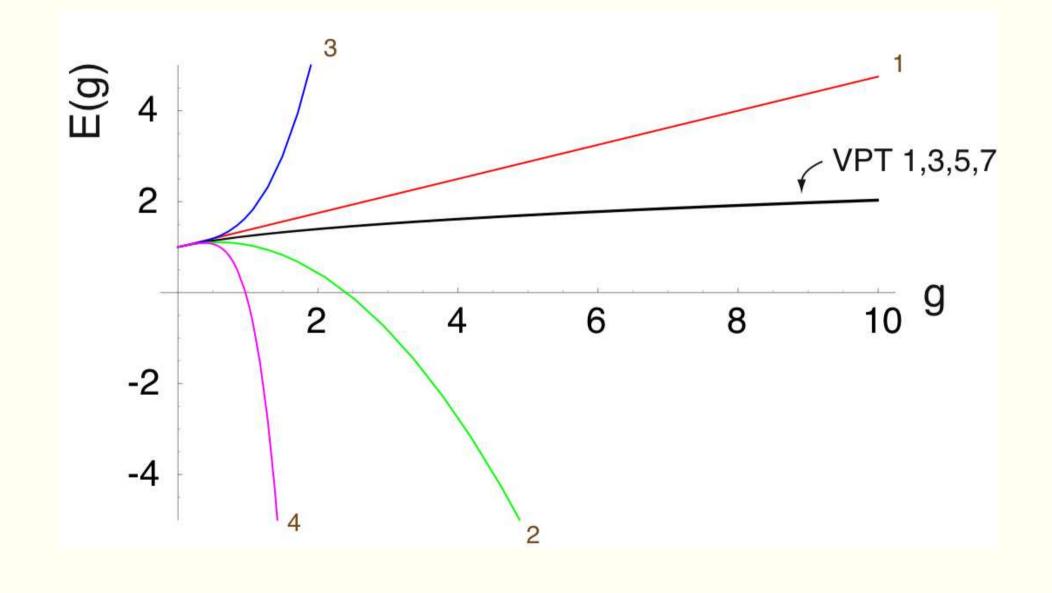
• The new coefficients c_n can be obtained by

$$c_n(r) = \sum_{j=0}^n c_j^{\text{BW}} \begin{pmatrix} (1-3j)/2 \\ n-j \end{pmatrix} (2r\Omega)^{n-j}$$

• Fix Ω_N by requiring that at each order N

$$\left. \frac{\partial E_N}{\partial \Omega} \right|_{\Omega = \Omega_N} = 0$$

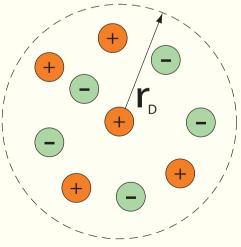
Variational Perturbation Theory



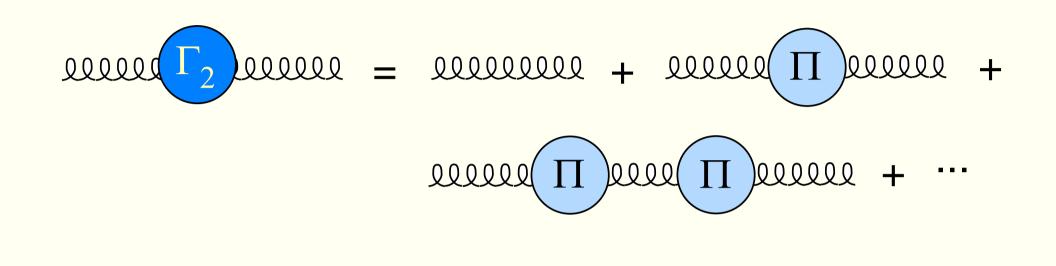
Finite Temperature QED/QCD Primer

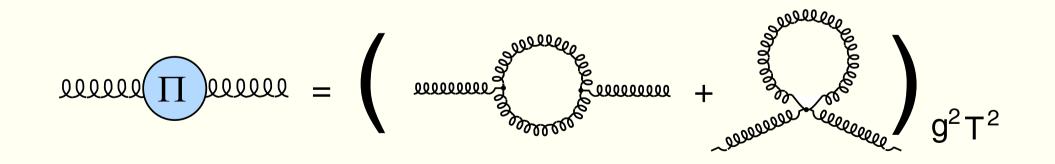
- Long-wavelength chromoelectric fields with momentum $k \sim \lambda^{-1} \sim gT$ are "screened" by an induced mass called the Debye mass m_D .
- At high temperatures particles \rightarrow massive quasiparticles
- $k \sim gT$ defines the soft scale, $k \sim T$ defines the hard scale.
- The inverse Debye mass is called the "Debye screening length", ie $r_D = 1/m_D$.

$$V_{\text{Coloumb}} \to V_{\text{Debye}} \sim \frac{e^{-m_D r}}{r} \sim \frac{e^{-r/r_D}}{r}$$



Hard Thermal Loops: Propagator Resummation





Finite Temperature QED/QCD Primer

- At leading order in the coupling constant $m_D^2 = g^2 T^2$ for QCD and $m_D^2 = e^2 T^2/3$ for QED; however, this is not the end of the story.
- Since QCD and QED are gauge theories, there are relationships between the n-point functions which must be maintained in order to preserve gauge invariance.
- These are called Ward-Takahashi or Slavnov-Taylor identities, e.g. $p_{\mu}\Gamma^{\mu}(p,q,r) = S^{-1}(q) S^{-1}(r)$ must be obeyed by the fermion-gauge field vertex function Γ^{μ} and propagator S.
- All n-point functions of the theory must be consistently derived.

$$\mathcal{L}_{\rm HTL} = -\frac{1}{2} m_D^2 \operatorname{Tr} \left(G_{\mu\alpha} \left\langle \frac{y^{\alpha} y^{\beta}}{(y \cdot D)^2} \right\rangle_y G^{\mu}{}_{\beta} \right)$$

Finite Temperature QED/QCD Primer

$$\mathcal{L}_{\rm YM} + \mathcal{L}_{\rm HTL} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} - \frac{1}{2} m_D^2 \operatorname{Tr} \left(G_{\mu\alpha} \left\langle \frac{y^{\alpha} y^{\beta}}{(y \cdot D)^2} \right\rangle_y G^{\mu}{}_{\beta} \right)$$

• $G_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}]$

•
$$D_{\mu} = \partial_{\mu} + igA_{\mu}$$

- Expanding to quadratic order in *A* gives propagator (2-point function)
- Expanding to cubic order in A gives dressed gluon three-vertex
- Expanding to quartic order in A gives gressed gluon four-vertex
- Contains an infinite number of higher order vertices

Hard-Thermal-Loop Perturbation Theory (HTLpt)

 Hard-thermal-loop perturbation theory is a reorganization of the perturbative series for QCD which is similar in spirit to variational perturbation theory

$$\mathcal{L}_{\text{HTLpt}} = \left(\mathcal{L}_{\text{QCD}} + \mathcal{L}_{\text{HTL}}\right) \bigg|_{g \to \sqrt{\delta}g} + \Delta \mathcal{L}_{\text{HTL}}(g, m_D^2(1-\delta))$$

The HTL "improvement" term is

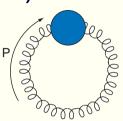
$$\mathcal{L}_{\rm HTL} = -\frac{1}{2}(1-\delta)m_D^2 \operatorname{Tr}\left(G_{\mu\alpha}\left\langle\frac{y^{\alpha}y^{\beta}}{(y\cdot D)^2}\right\rangle_y G^{\mu}{}_{\beta}\right)$$

where $\langle \cdots \rangle_{y}$ indicates angle average

HTLpt: 1-loop free energy for pure glue

• Separation into hard and soft contributions ($d = 3 - 2\epsilon$)

$$\mathcal{F}_g = -\frac{1}{2} \oint_P \left\{ (d-1) \log[-\Delta_T(P)] + \log \Delta_L(P) \right\}$$



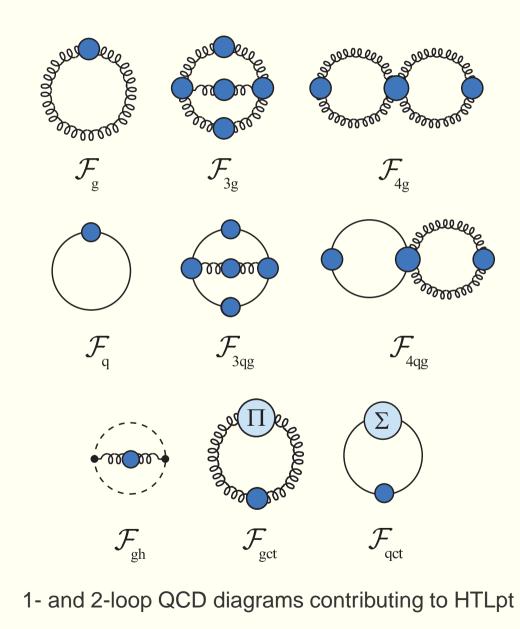
 $\circ~$ Hard momenta $(\omega,\mathbf{p}\sim T)$

$$\mathcal{F}_{g}^{(h)} = \frac{d-1}{2} \oint_{P} \log(P^{2}) + \frac{1}{2} m_{D}^{2} \oint_{P} \frac{1}{P^{2}} - \frac{1}{4(d-1)} m_{D}^{4} \oint_{P} \left[\frac{1}{(P^{2})^{2}} - 2\frac{1}{p^{2}P^{2}} - 2d\frac{1}{p^{4}} \mathcal{T}_{P} + 2\frac{1}{p^{2}P^{2}} \mathcal{T}_{P} + d\frac{1}{p^{4}} (\mathcal{T}_{P})^{2} \right] + \mathcal{O}(m_{D}^{6})$$

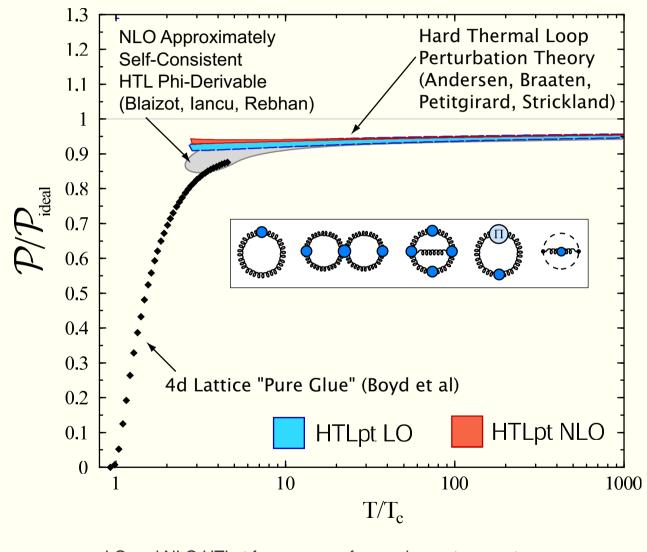
• Soft momenta $(\omega, \mathbf{p} \sim gT)$

$$\mathcal{F}_g^{(s)} = \frac{1}{2}T \int_{\mathbf{p}} \log(p^2 + m_D^2)$$

HTLpt: 1- and 2-loop diagrams for QCD

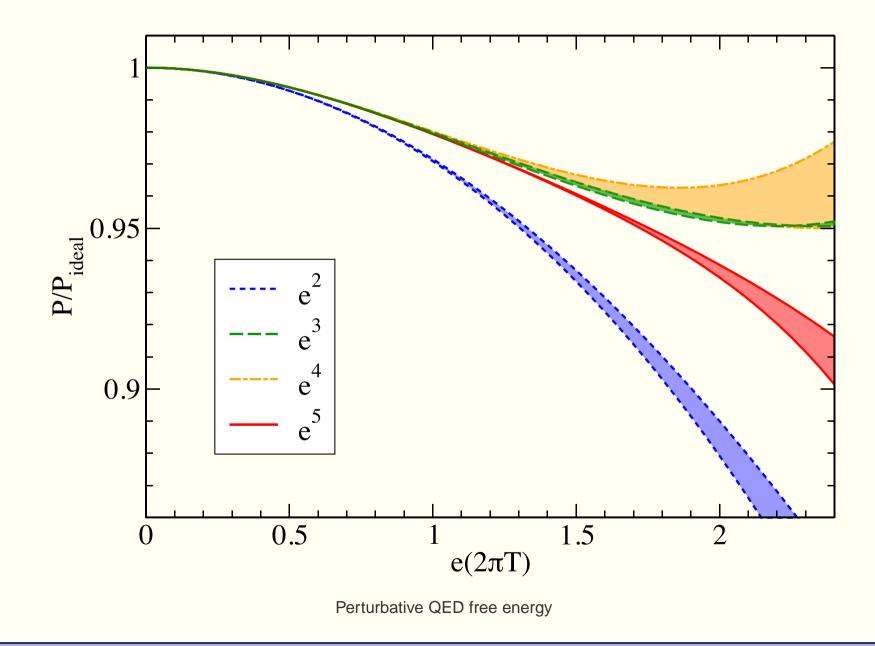


HTLpt: 1- and 2-loop free energy for pure glue

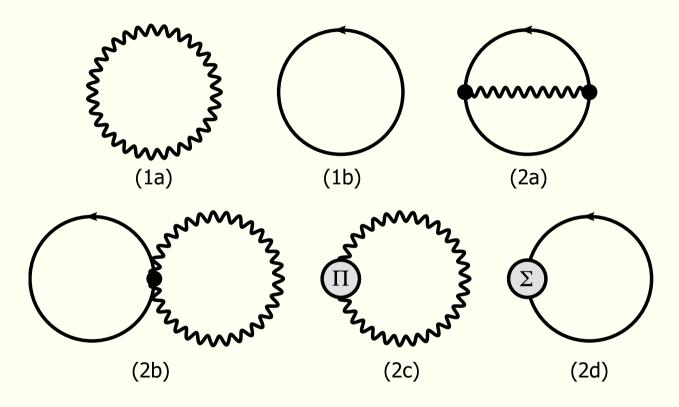


LO and NLO HTLpt free energy of pure glue vs temperature Andersen, Braaten, Petitgirard, Strickland, 02.

HTLpt: naive pert. expansion of QED free energy



HTLpt: 1- and 2-loop diagrams for QED

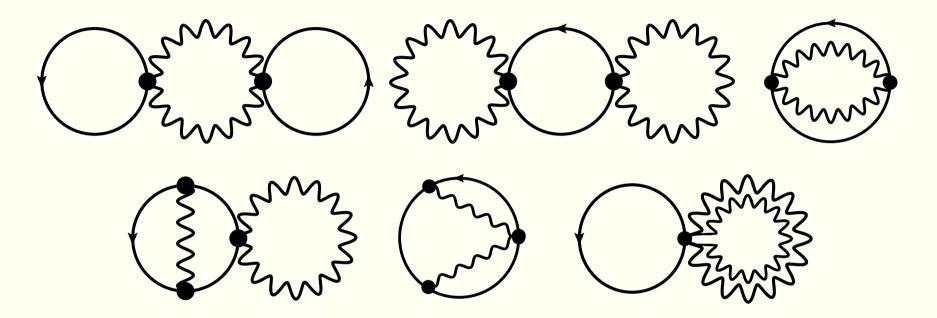


1- and 2-loop QED diagrams contributing to HTLpt

HTLpt: 3-loop diagrams for QED (∏)∕ \sim (3b) (3c) (3d) (3e) (3f) (3a) M T (3g) (3j) (3h) (3i) (3I) (3k)

3-loop QED diagrams contributing to HTLpt

HTLpt: 3-loop diagrams for QED



3-loop HTLpt QED diagrams which can be neglected in our approach since we make a dual expansion in e and m_D assuming $m_D \sim e$ at leading order.

HTLpt: 3-loop thermodynamic potential for QED

• The NNLO thermodynamic potential reads

$$\begin{split} \Omega_{\rm NNLO} &= -\frac{\pi^2 T^4}{45} \left\{ 1 + \frac{7}{4} N_f - \frac{15}{4} \hat{m}_D^3 \\ &+ N_f \frac{\alpha}{\pi} \left[-\frac{25}{8} + \frac{15}{2} \hat{m}_D + 15 \left(\log \frac{\hat{\mu}}{2} - \frac{1}{2} + \gamma + 2 \log 2 \right) \hat{m}_D^3 - 90 \hat{m}_D \hat{m}_f^2 \right] \\ &+ N_f \left(\frac{\alpha}{\pi} \right)^2 \left[\frac{15}{64} (35 - 32 \log 2) - \frac{45}{2} \hat{m}_D \right] \\ &+ N_f^2 \left(\frac{\alpha}{\pi} \right)^2 \left[\frac{25}{12} \left(\log \frac{\hat{\mu}}{2} + \frac{1}{20} + \frac{3}{5} \gamma - \frac{66}{25} \log 2 + \frac{4}{5} \frac{\zeta'(-1)}{\zeta(-1)} - \frac{2}{5} \frac{\zeta'(-3)}{\zeta(-3)} \right) \\ &+ \frac{5}{4} \frac{1}{\hat{m}_D} - 15 \left(\log \frac{\hat{\mu}}{2} - \frac{1}{2} + \gamma + 2 \log 2 \right) \hat{m}_D \right] \right\} \end{split}$$

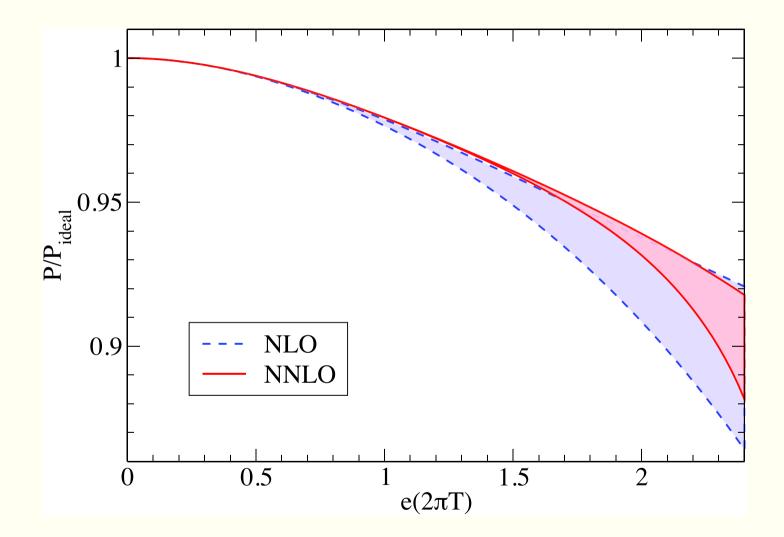
PURELY ANALYTIC!

• To eliminate the m_D and m_f dependence, the gap equations are imposed

$$\frac{\partial}{\partial m_D} \Omega(T, \alpha, m_D, m_f, \delta = 1) = 0$$

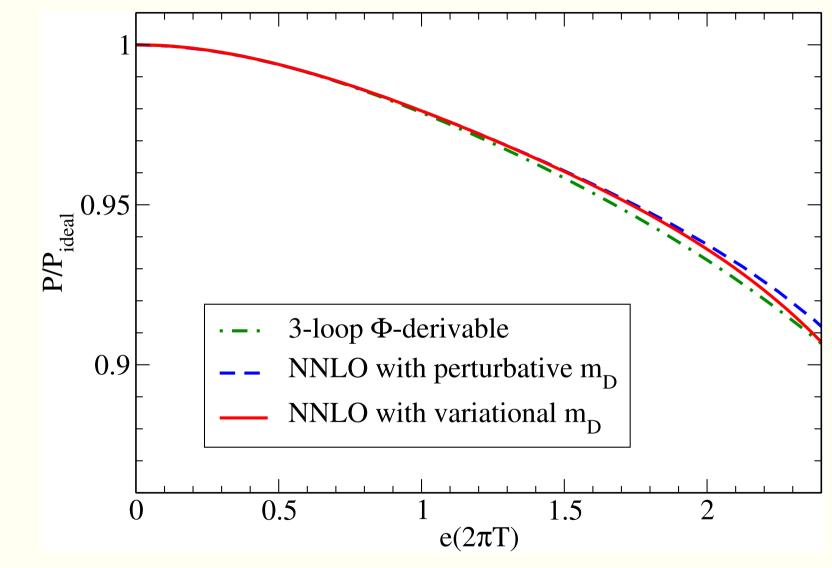
$$\frac{\partial}{\partial m_f} \Omega(T, \alpha, m_D, m_f, \delta = 1) = 0$$

HTLpt: 2- and 3-loop free energy for QED



NLO and NNLO HTLpt predictions for QED free energy

HTLpt: comparison of different methods/schemes



Comparison of three different predictions for the QED free energy at $\mu = 2\pi T$ 3-loop Φ -derivable result is taken from Andersen and Strickland, 05

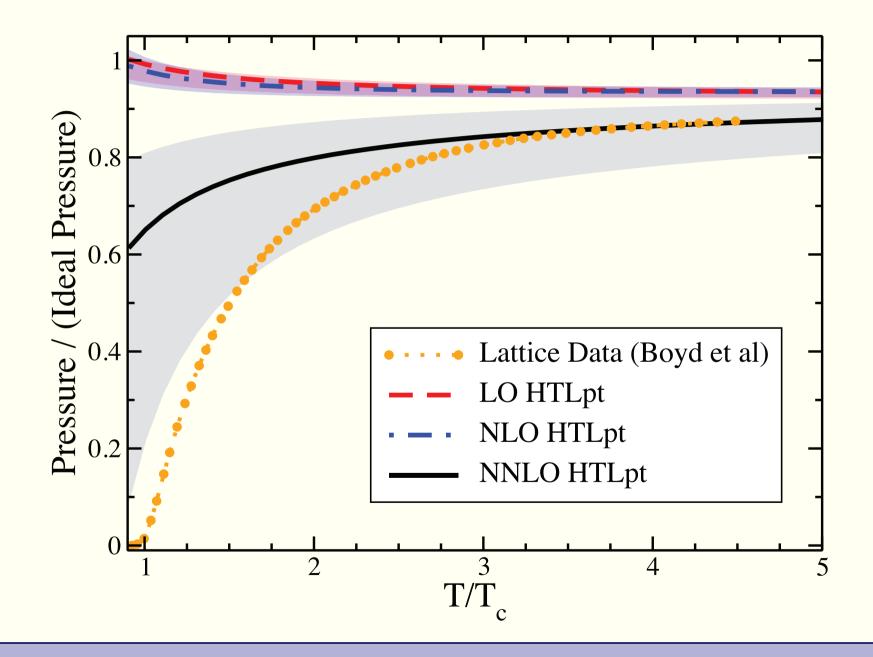
NNLO HTLpt thermodynamic functions for pure glue

 Together with Jens Andersen (Trondheim, Norway) and my graduate student Nan Su (Frankfurt Institute for Advanced Studies, Frankfurt Germany) we have recently completed a three loop calculation of the HTLpt thermodynamic potential

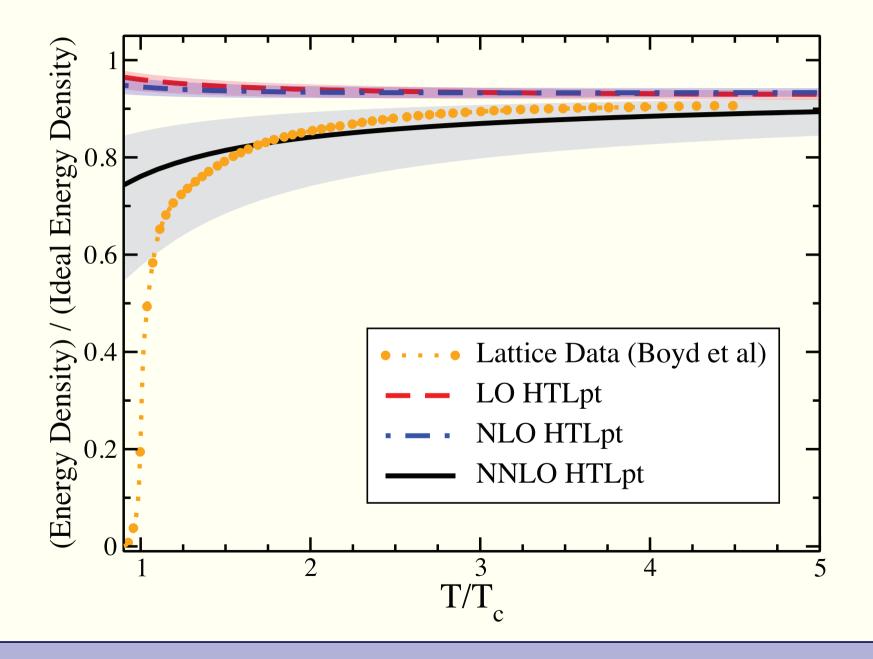
$$\begin{aligned} \frac{\Omega_{\text{NNLO}}}{\mathcal{F}_{\text{ideal}}} &= 1 - \frac{15}{4} \hat{m}_D^3 + \frac{N_c \alpha_s}{3\pi} \left[-\frac{15}{4} + \frac{45}{2} \hat{m}_D - \frac{135}{2} \hat{m}_D^2 - \frac{495}{4} \left(\log \frac{\hat{\mu}}{2} + \frac{5}{22} + \gamma \right) \hat{m}_D^3 \right] \\ &+ \left(\frac{N_c \alpha_s}{3\pi} \right)^2 \left[\frac{45}{4} \frac{1}{\hat{m}_D} - \frac{165}{8} \left(\log \frac{\hat{\mu}}{2} - \frac{72}{11} \log \hat{m} - \frac{84}{55} - \frac{6}{11} \gamma - \frac{74}{11} \frac{\zeta'(-1)}{\zeta(-1)} + \frac{19}{11} \frac{\zeta'(-3)}{\zeta(-3)} \right) \\ &+ \frac{1485}{4} \left(\log \frac{\hat{\mu}}{2} - \frac{79}{44} + \gamma + \log 2 - \frac{\pi^2}{11} \right) \hat{m}_D \right] \end{aligned}$$

- For the Debye mass above we use the NLO expression for $\Pi_{00}(P=0)$ which was derived using effective field theory methods (Braaten and Neito, 1995).
- For α_s we use the standard 3-loop running.

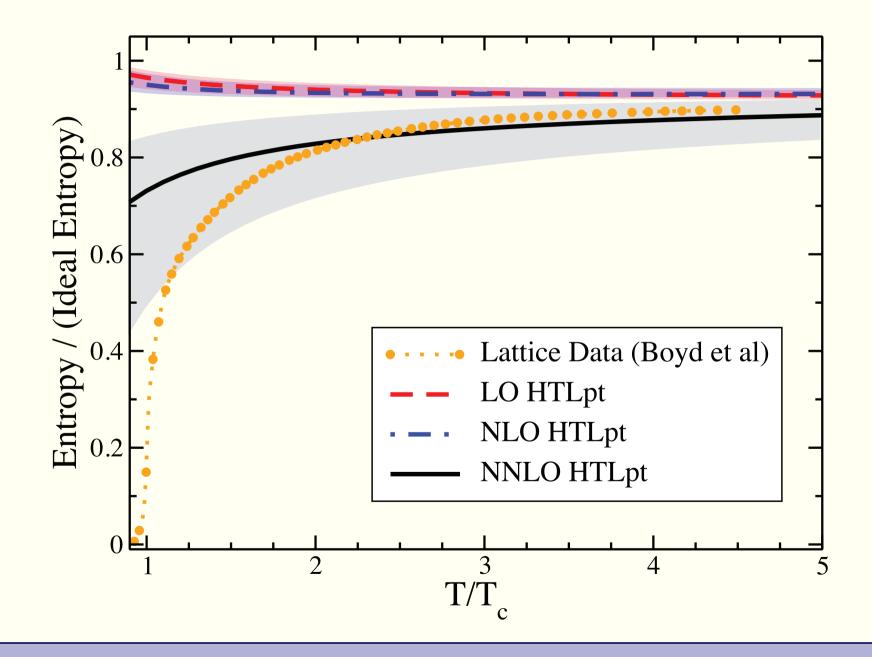
NNLO Pressure (Andersen, Strickland, Su, forthcoming)



NNLO Energy (Andersen, Strickland, Su, forthcoming)



NNLO Entropy (Andersen, Strickland, Su, forthcoming)



Conclusions and Outlook

- The problem of bad convergence of finite temperature weak-coupling expansion is generic.
- It does not just occur in gauge theories, but also in scalar theories, and even in quantum mechanics.
- Variational perturbation theory and hard-thermal-loop perturbation theory can improve the convergence of perturbative calculations in a gauge-invariant manner which is formulated in Minkowski space.
- The NNLO results for pure-glue SU(3) Yang-Mills look very good for $T > 2 3T_c$! Especially considering that there are *no free parameters* to play with.
- Once the NNLO full QCD thermodynamics is obtained (COMING SOON!) we can start trying to use the HTLpt reorganization to calculate dynamic quantities such as momentum diffusion, viscosities, etc.