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Electron Beam Lithography (=80 nm) UV-vis-IR Micro-Raman Spectroscopy

Atomic Force Microscopy Optical Cryostat

..plus CVD nanotube growth, general wafer processing (UVML),
and numerous light sources...
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Core experimental collaborations...

» Oak Ridge CNMS (high-res Raman etc.)

* VT Chemistry (magnetofullerenes)

* Luna Corp. (193 nm superlenses; trimetaspheres)

* NIST & Argonne (growth of epitaxial graphene; IETS)
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Quick Review of Single-walled Carbon Nanotubes...

2.46 A .
; graphene

« Electronic structure closely related to that
of graphene.

 Tight-binding: consider only nearest-
neighbor wavefunction overlap.

» Let y, be the overlap integral between the
neighboring atoms

— 2D dispersion of graphene’:

k.a k a
E(k,.k,) = iyo\/1+ 400{ \/§:an co{%j + 4cos{%j

*PR. Wallace, Phys. Rev. Lett. 71(9) 622-634, 1947

References




SWNT as molecular interconnects:

 Cylindrical boundary conditions define
a tube:

C=na, +ma,

e Chiral indices (n,m) determine the
band structure’:

In-m| =0,3,6,..., metallic;
otherwise semiconducting.

(valid for all but the smallest diameter
nanotubes)

N ' (5.5)
D=6.78 A
\ (9,0)
D=7.05A
\ (6.4)
D=6.83A
Reference

¥ J.W. Mintmire et al., J. Phys. Chem. Sol. 54(12)
1835-1840, 1993.
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Nanotube Resonant Raman

Raman intensity {arbitrary units)
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Nanotube-based FETSs...

drain
electrode

source
electrode

« Channel = semiconducting nanotube

e FETs can also be gated by a local wire or by
a liquid

e Smallest tubeFET ~100 nm (gap between
source and drain)

FET Structure:

channel

-1.5V 1.5V

ol """rnm

In Vi |"”"’in2

» Top-down FET logic gates have been made —-J ——




Room-temp. SETs also possible...

FET

drain
electrode

channel
S O———(—1—O0OD

G

Double .
kink ~ £

(Postma, Delft)
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Chemical Vapour Deposition Growth of Nanotubes

Catalyst

Furnace deposition
~1000C l

Si/SIO, substrate

) Nanotube
withcatalyst

growth

l

SEM

!

E-beam
lithography

N.b. one of the ‘hands on’ labs for my PHYS 582 nano class...
Transport,

Raman etc.
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Catalyst
deposition

l

Nanotube
growth

SEM

!

E-beam
lithography

Transport,

20 pm | _ _ Raman etc.
— SEM Image of Complete Nanotube Transistor Device




KEITH WILLIAMS * NANOPHYSICS GROUP * DEPARTMENT OF PHYSICS

Catalyst
deposition

l

Nanotube
growth

SEM

!

E-beam
lithography

Transport,
Raman etc.

20 pm
— SEM Image of Complete Nanotube Transistor Device



Reversal of current blockade in nanotube-based FETs
through multiple trap correlations ... at room tempera ture

Experiment Theory
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-Chan et al. PRB (2009)



Reversal of current blockade in nanotube-based FETs
through multiple trap correlations

Stochastic switching between two levels....

e M

340 341 342 343 344
Ve (V)

... RTS amplitude reaches 80% of current, at room temperature!



Reversal of current blockade in nanotube-based FETs
through multiple trap correlations
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Reversal of current blockade in nanotube-based FETs
through multiple trap correlations

Key points:
* Observed in long-channel nanotube FETs
» unprecedentedly high amplitude, at room temperature
» multiple traps with correlated electrostatics
» 1D channel — very sensitive to gate, thus can

resolve closely adjacent traps

...and noisy current through nanotubes isn’t so unusual; why?



Nanotube transport:
L~200 nm
« 1D, ballistic conductance observed =
D
e 2 transport channels I
O
» Contacts are important!
Metallic SWNT':  Ti contacts
G = 2G,
Semiconductors * : Pd contacts
G = 0.5G, 3
D
N B
O o Glyan,
L =03 um oy
W, w=13Y
Ze Z 245
G T T (K)
channels References

T Kong & Dai et al., Phys. Rev. Lett. 87(10) 106801, 2001.
1 Javey & Dai et al., Nature 424 654, 2003.



Nanotube transport:

« 1D Tomonaga/Luttinger liquid
behavior is anticipated:

G BT

p(E) O g/

e Observations of LL behavior in SWNT:

Bockrath, transport studies:
a-~0.3

Yao & Postma, intramolecular junction:

g ~0.22

Ishii, photoemission studies, on Au:
g~0.18

e

1 (bulk)

Luttinger
/ )
\_'(end) Liquid

a.,=(g"-1/4

end
Qpuk = (9*+9-2)/8
J 0<=gx<1l

l

g=1 for zero long-range Coulomb
interaction
(non-correlated electrons)

g<1 for long-range, repulsive
Coulomb interactions

References

T Tomonaga, S., Prog. Theor. Phys. 5 544 (1950);
Luttinger, J.M., J. Math. Phys. 4 1154 (1963).
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EBL with in situ transport measurement...

source
drain
gate

...and attach gas cylinders to vent
chamber to O,, H,, etc.

...this allows us to write across contacted nanotubes and look for
current noise generated by surface charging and/or beam damage...
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e-beam

...a portion of the tube channel is exposed to e-beam
after the FET device is completed...
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Recall scatter / backscatter / proximity issues with e-beam lithography:

2-
1
= 10kV
4Illllll I R I T I T T I T
Elum {E} E|'.-||"E"| l:b}

-Monte Carlo Simulation, http://cmi.epfl.ch/ebeam



KEITH WILLIAMS * NANOPHYSICS GROUP * DEPARTMENT OF PHYSICS

Recall scatter / backscatter / proximity issues with e-beam lithography:

(responsible for ‘undercut’ seen in resist)

2-
1
= 10kV
4Illllll I R I T I T T I T
Eum {E::' E|'.-||"E"| l:b}

-Monte Carlo Simulation, http://cmi.epfl.ch/ebeam
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exposure with

-9 |
150x10 positive back gate
= exposure without gate
3 vacuum / pristine
100 -
T exposure with
negative backgate
-5 0 )

-Chan, JCP (2009)
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Transport after

exposure with ...+ gate ...- gate ...+ gate ...- gate ...+ gate ... - gate ...+ gate...
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<
8
100 - E : . - . -
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Intensity (A.U)

Raman disorder band reveals beam damage to the nanotube...
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...persistent noise induced by e-beam exposure....
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Key points:
* possible to sever tubes with fairly low energy e-beam
e charge trapping observed — two-state current flicker

* substrate charging may contribute overall shift in ambipolar curve;
this effect is related to backgate bas during exposure

* fine-scale writing of traps and tunnel barriers may be possible;
multiply-segmented tubes currently being explored
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Magneto-Raman Apparatus
(completed Fall 2009)
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Previous work: Modified Optical Cryostat (10.2 — 300 K)
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Susceptibility data shows inflection in Gd;N@Cg,
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Optical cryostat delivered Fall '09...

S

recoeery

Pressurs — 4 To helium
Electrical sco=ss
i IEI Floss
——— et e

Wacuum spacs

Cuick
Samnple holder rolense
L Radiation shisld clamp

Gas fhorer
pump

... permits micro-Raman + transport in a B-field at ~2K
... DARPA subcontract via Luna Corp.



Cg, Cage Modes

Pentagon Breathing A,(2) 1471 cm™

Twist Hy(2) 355 cm™ Breathing Ay(1) 430 cm™

Pentagon Distortion H,(8) 1517 cm?



Gd;N Modes

Scissor 94.8 cm1 Wagging 511.5 cm?

- 2 o

Breathing 112.1 cm™ Asymmetric Stretch 747.8 cm™



Gd;N@Cg, Modes

Hy(2) 370.7 cm™ (Exp 361.3 cm™?) Ay(1) 428.5 cm™ (Exp 430.4 cm™)



Gd;N@Cg, (cmL)
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Low-Frequency Raman Spectra of Gd;N@C,,, (90 K)

COM Gd-cage radial cage modes

632.8 nm
Gd3N@C88
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Intensity (a.u.)
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Analysis of low-energy Raman lines of Gd  ;N@C,,, (40 = n < 44) taken at 90 K indicating a
hindered rotation due to the coupling of the core c omplex to the cage.



Mode Comparison: Y,/Gd;N@Cg, (90 K)

COM - M-cage radial cage modes

Y,N@Cygq 632.8 nm
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Comparison of Y ;N@Cgg and Gd ;N@Cgg Raman data taken at 90 K. Analysis of the data iden  tifies C g4
cage modes, hindered rotation modes and center of m  ass modes. Prominent peak correlations are
denoted by dashed lines.



IETS of Gd;N@Cy, (90 K)

IETS: no symmetry selection rules

Voltage (V)
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Experimental IETS spectrum obtained for Gd  ;N@Cg, with modulation amplitude V., =4 mV, scan rate
= 1.5 mV/s and time constant = 1 s. The anti-symmet ric Gd—N stretch mode is identified at 81.6 mV

(658 cm-1) as well as Raman C 4, cage modes at 155.1 mV (1251 cm -!) and 187.5 mV (1512 cm 1),



Kondo Scattering in Gd;N@Cg, ?

8.4

I ~12 meV
T, ~70K
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Experimental conductance data of Kondo effect and z ~ ero-bias anomaly in Gd ;N@Cg,
taken at 4.2 K. Inset shows the experimental setup: Au crossed-wire apparatus forms a
junction with the Gd ;N@Cg, thin film.
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Graphite edge decoration with cationic nanoparticles...

10 pm - 5 _ 4 ; .- R ‘ . y
StageatT= 0.0 EHT = 539 kV Signal A = InLens Date :5 Oct 2009
| | WD = 6.3 mm Mag= 399KX Time :16:01:50




Graphite edge decoration with nanoparticles...

StageatT= 0.0 EHT = 539 kV Signal A = InLens Date :5 Oct 2009
- WD = 6.3 mm Mag= 29.98 KX Time :16:02:24
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Nanoparticle enhanced Raman Spectrum...
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(514.5 nm excitation)



Same samples- different points...
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E-beam writing on epi-graphene + transport...

L}

... I/V and Hall measurements in preparation; collab with Lloyd Harriott’'s group.
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E-beam writing on epi-graphene + transport...

L}

@

... I/V and Hall measurements in preparation; collab with Lloyd Harriott’'s group.

N.b. Seminar next Thursday by Brian Leroy...



Thursday, October 29, Brian Leroy
2009

4:00 PM, Room 204 Univ. of Arizona
Physics Building “Local electronic
properties of
graphene”
ABSTRACT:

Combining scanning probe microscopy with electrical transport measurements is a powerful
approach to probe low-dimensional systems. The local information provided by scanning probe
microscopy is invaluable for studying effects such as electron-electron interactions and scattering.
Using this approach, we have probed the local electronic properties of m ono- and bilayer
graphene with atomic resolution. We studied the eff  ect of ripples, charged impurities and
defects on the local density of states.  We find that long-range scattering from ripples and
impurities shifts the Dirac point leading to electron and hole puddles. Short-range scattering from
lattice defects mixes the two sublattices of graphene and tends to be strongly suppressed away
from the Fermi energy. In addition, in bilayer graphene we observe an opening of a band gap
due to the application of a transverse electric fie  Id.
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Artificial Cilia for the Investigation of
Cell Cooperativity in Wound Healing*

Keith Williams Physics

Brian Helmke Biomedical Engineering

Mool Gupta Electrical & Computer Engineering
Kurt Kolasinski Chemistry, West Chester University

Undergrad currently working on this project: Aagya Mathur

*Work seeded in Fall 2008 by NanoSTAR
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Nanopillars fabricated in the group of co-Pl Gupta (UVa).
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@) b WW
laser growth
texture factor
PDMS cell
cure culture
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plasma
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EHT = 1.38 kV Signal A = InLens Date :22 Jul 2008
WD= 5mm Photo No. = 7256 Time :13:24:37
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Current group:

Drs. Brian Burke (graduating Fall ‘09)
Drs. Jack Chan (graduating Spring ‘10)
Drs. Caixia Bu

Drs. Nattawut (a.k.a. Tom) Anuniwat
Kridsanaphong (a.k.a. Tor) Limtragool
Aagya Mathur

Collaborations:

Avik Ghosh (UVa, ECE, theory)

Lloyd Harriott (UVa, ECE, graphene device fab)

Giovanni Zangari (UVa, graphene electrochem)

Harry Dorn (VT, endofullerenes)

Kurt Gaskill (NRL, epi graphene)

Nathan Guisinger (Argonne, epi-graphene)

James Kushmerick (NIST, IETS on fullerenes)

David Geoghegan (Oak Ridge CNMS, high-res, low freq. Raman)

Luna Corp. Blacksburg and Danville (193nm superlens; magneto-Raman)

Funding: NSF, DARPA, UVa NanoSTAR



