
Orbital orders and 
orbital order driven 
quantum criticality  

Zohar Nussinov




C. D. Batista, LANL       arXiv:cond-mat/0410599 (PRB)


M. Biskup,  L. Chayes, UCLA;  J. van den Brink, Dresden 

arXiv:cond-mat/0309691(Comm Math Phys) ; 

0309692 (EPL)


E. Fradkin, UIUC arXiv:cond-mat/0410720 (PRB)


G. Ortiz, E. Cobanera, Indiana arXiv:cond-mat/0702377, 
0801.4391, 0812.4309, 0907.0733


(Annals of Physics, EPL, PRB); PNAS 2009


      



Conclusions (new results) 
•   Orbital systems can order by thermal “order out of 

disorder” fluctuations even in their classical limit 
(no (1/S) zero point quantum fluctuations are 
necessary). 

•   Similar to charge and spin driven quantum critical 
behavior, it is theoretically possible to have orbital 
order driven quantum critical behavior. 
(Prediction.)  

•   Orbital systems can exhibit topological order and 
dimensional reductions due to their unusual 
symmetries (exact or approximate).  

•  A new approach to dualities. 
•   Orbital nematic orders  (from symmetry 

selection rules) and related selection rules 
•   Orbital Larmor effects are predicted- periodic 

changes in the orbital state under the application of 
uniaxial strain. 
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         “Order by disorder” in orbital systems 

3.  Orbital order driven quantum criticality and glassiness 

Exact solutions as a theoretical proof of concept 
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Low  dimensional gauge like symmetries and dimensional 

reductions; experimentally testable selection rules
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Transition Metal Compounds

•  Levels in 3d shell split by crystal field.


t2g

•  Single itinerant electron @ each site

with multiple orbital degrees of freedom.


eg

d–orbitals




The 3d orbitals  
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The five 3d orbital states share  the same radial 

Function. Their angular dependence:




Illustration by R.  Hill




LaMnO3




The Hilbert space of the eg orbitals is spanned by two

states. The associated Jahn-Teller distortions can be expressed as vectors 

on a two dimensional unit disk (linear combinations of the two 
independent distortions Q2,3).  An effective pseudo-spin S=1/2 (or CP1) 

representation. There is an angle of 120 degrees between the three 
different cubic lattice symmetry related orbitals.


Similarly, the three t2gorbitals can be represented by an effective S=1 
representation. (In a Bloch sphere representation, there is an angle of 90 

degrees between different point group symmetry related distortions.)


x2 − y2 = S = −m = 1 / 2 ≡ ⇓ ; 3z2 − r2 = ⇑

xy = S = 1,m = 0 ; yz = 2−1/2 ( 11 + 1−1 );
zx = −i2−1/2 ( 11 − 1−1 )
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Unlike spins, orbitals live in real space. 
The orbital interactions  

are not isotropic. Reduced symmetry 
and frustration. 



Transition Metal Compounds

•  Levels in 3d shell split by crystal field.


t2g

•  Single itinerant electron @ each site

with multiple orbital degrees of freedom.


Super–exchange approximation (and neglect of strain–field induced interactions among orbitals):


[Kugel–Khomskii Hamiltonian]


H = Horb
r, ′r

<r, ′r >
∑ (sr ⋅ s ′r + 1

4 )
Horb
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eg

d–orbitals


 = direction of bond
r − ′r

120º–model (eg–compounds)

V2O3,  LiVO2,  LaVO3,LaMnO3, …
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orbital compass–model (t2g–compounds)

LaTiO3,  …




Jahn-Teller distortions 
The distortions preferred by different orbital states:


The JT distortions can be 

denoted in terms of 


the spinor representation 

of the orbital states




The orbital only interactions 

The orbital component of the orbital dependent super-
exchange as well as the direct Jahn-Teller orbital only 

interactions have a similar form:


Horb = J π r
α

r
∑

α
∑ π r+eα

α



•  Orbital only approximation: Neglect spin degrees of freedom.


120º Hamiltonian:


H = J (Sr
[ x ]

r
∑ Sr+ex

[ x ] + Sr
[ y]Sr+ey

[ y] + Sr
[ y]Sr+ez

[z ] )

H = J (Sr
[a]

r
∑ Sr+ex

[a] + Sr
[b]Sr+ey

[b] + Sr
[c]Sr+ez

[c] )
 


Sr  an XY –spin

 Sr
[a] =

Sr ⋅ â

â,  b̂ and ĉ
unit vectors spaced @ 120º.


Orbital compass Hamiltonian:


similarly for Sr
[b]  & Sr

[c],

 


Sr = (Sr

[ x ], Sr
[ y], Sr

[z ] )

– usual Heisenberg spins.




The 120 degree model


write

  


Sr∈S1,  


Sr = Sr

[ x ], Sr
[ y]( ).

H = J (Sr
[a]

r∈ΛL

∑ Sr+ex
[a] + Sr

[b]Sr+ey
[b] + Sr

[c]Sr+ez
[c] )

+  constant.


Attractive couplings (ferromagnetic).

Couples in x–direction with projection along a–component.

Couples in y–direction with b–component.

Couples in z- direction with c-component


= − J
2

(Sr
[a] − Sr+ex

[a] )2 + (Sr
[b] − Sr+ey

[b] )2 + (Sr
[c] − Sr+ez

[c] )2( )
r∈ΛL

∑

Clear:  Any constant spin–field is a classical ground state. Ditto 
for the orbital compass model.


• U(1) symmetry emerges in the ground state sector of the large S theory*


 Sr
[a] =

Sr ⋅ â.



Naïve spin-wave theory is a complete disaster


G(k,ω = 0) α Δa + Δb + Δc

ΔaΔb + ΔaΔc + ΔbΔc

Fix kz
 G(k,ω = 0) α 1
Δa + Δb

Very IR divergent.




Lower Dimensional Symmetries  

Ising-type discrete emergent 
symmetries


of the classical 120 degree 
model


Z. Nussinov, M. Biskup, 

L. Chayes, and J. v. d. Brink

0309692 (EPL)




Lower Dimensional Symmetries  

23L
for the ground states


Additional discrete degeneracy factor of


L x L x L

lattice


Reflect all orbital 

 pseudo-spins in 

entire planes.




                       Order out of disorder- 

In the physics literature since the early 80’s


E. F. Shender, Antiferromagnetic Garnets with Fluctuationally 
Interacting Sublattices, Sov. Phys. JETP 56 (1982) 178–184 .


J. Villain, R. Bidaux, J. P. Carton and R. Conte, Order as an Effect of 
Disorder, J. Phys. (Paris) 41 (1980), no.11, 1263–1272.


C. L. Henley, Ordering Due to Disorder in a Frustrated Vector 
Antiferromagnet, Phys. Rev. Lett. 62 (1989) 2056–2059.


Really clarified matters; put things on a 
firm foundation in a general context.


Plus infinitely many papers (mostly quantum) in which specific calculations done.

Earlier orbital order work focused on zero point 1/S fluctuations.

Our result: orbital order is robust and persists for infinite S. Zero point quantum 
fluctuations are not needed to account for the observed orbital order.


1)  Weighting of various ground states

must take into account more than just energetics:


•  Fluctuations of spins will contribute to overall statistical weight.


2)  These (spin–fluctuation) degrees of freedom will 

themselves organize into spin–wave like modes.


•  Can be calculated (or estimated).




Spin wave free energy calculation  

HSW = J
2

qγ (θ
*)(

r ,α
∑ ϑr −ϑr+eα
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logZ(θ*) = − 1
2
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Δ(kα ) = 2 − 2coskα

qc (θ
*) = sin2θ*, qa,b (θ

*) = sin2 (θ* ± 2π
3
)

Expand about the uniform state: 
θr = θ*

The free energy has strict minima at 
θ* = nπ / 3
Sr = ±SeαSix uniform ground states:




Stratified states:
 θr = (−1)
xθ*

F(θ*) = d 3k
(2π )3k∈B.Z .

∫ logdet(βJΠk )

Πk =
q1Δ1 + q+Δ+ q−Δ−

q−Δ− q1Δ1
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*
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qα ≡ qα (θ
*) Δα ≡ Δα (k)

Δα
* = Δα (k +πeα )

q± =
1
2
(q2 ± q3)

Δ± = Δ2 ± Δ3

F(θ*) > F(0), θ* ≠ 0,π

Low free energy states are not stratified.




Finite temperature order  

Using Reflection Positivity along

with a Peierls argument, we readily established that


at sufficiently low temperatures,

one of the six low free energy 


states is spontaneously chosen.


Z. Nussinov, M. Biskup, L. Chayes, and J. v. d. Brink, arXiv: cond-mat/0309692 


Interesting feature:  Limiting behavior of 
model as T goes to zero is not the same 
as the behavior of the model @ T = 0.


Reflection Positivity (chessboard estimates):
 Pβ (A) ≤
zβ (A)
zβ
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Nematic orbital order  

Z. Nussinov, M. Biskup, L. Chayes, and J. v. d. Brink, arXiv: cond-mat/0309692


For the t2g orbital compass type models, 

uniform order cannot appear. By symmetry considerations, 


it is established that           .  Instead, an  

“orbital nematic order”    


(e.g.,                                 in the 2D orbital compass)

can be proven to onset at sufficiently 


low yet finite temperatures.


Sr = 0

(Sr
xSr+ex

x − Sr
ySr+ey

y ) ≠ 0
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Orbital order driven quantum criticality 

Fact: Quantum criticality can be associated with charge 

and spin driven orders. The transition metal oxides exhibit


a rich interplay of charge/superconducting, spin, and orbital orders.


Question: Can there be an entirely new family of “orbital order driven 

quantum critical points”?


Answer: This is not forbidden and may occur theoretically. Indeed,  

in some simple yet exactly solvable models, there are orbital


order driven quantum critical points (driven in the Hamiltonians 

by doping/dilution and/or uni-axial pressure).


Orbital analogues of quantum spin glasses are similarly

found. For these models, the associated CFTs are standard.  


Z. Nussinov and G. Ortiz, arxiv:0801.4391 




Diluted Orbital Compass Model and Criticality 

After doping: New gauge symmetry	



Quantum critical	





Diluted Orbital Compass Model and Criticality 

After doping: New gauge symmetry	



For a system with random

exchange couplings      , 


replicating the same

steps mutatis mutandis


leads to the Random 
Transverse Field Ising

Model. Pressure plays

the role of a transverse 

field. 


Jµ



i jklUl ;iUk;lUi ;jUj ;kS = ¡ 1
g2

¡ P
Re Tr(Ui ;j Uj ;kUk;l Ul ;i ¡ 1)

¢

Intermezzo: using the same idea, we can solve many other models using “Bond 
Algebras” (Z. Nussinov and G. Ortiz, 0812.4309) and derive a new 
exact self duality (E. Cobanera, G. Ortiz, and Z. Nussinov 0907.0733) for ZN gauge  
theories in 3+1 dimensions (earlier conjectured not  
be self‐dual). With  ‘t Hooft ideas in mind,  
numerous authors  studied of Wilson’s action  
for Lattice Gauge Field Theories 

restricting the fields to  
Nth roots of unity (      ). 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Specifically, the dual coupling is given by 

H = ¡
X

n
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h
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= exp[− 1
2g2
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FN (K ) ≡ e
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N
)
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∑

E. Cobanera, G. Ortiz, and Z. Nussinov 0907.0733

Exact lattice relation! No Villain type nor any other approximation.


4gc
2KN (

1
2gc

2 ) = 1



The “Orbital Larmor Effect”  

 

HP = γ Pνσ j
ν

j
∑

d

σ i

dt
= γ

σ i ×


Pi


Pi = Pi,νeν

Pressure effects:


Prediction: In the presence of uniaxial 
pressure, the orbital state will change 

periodically in time.


Z. Nussinov and G. Ortiz, arxiv: 0801.4391
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Gauge-Like-Symmetries	


(Ising Gauge Theory)	



(Orbital Compass Model)	



(XY model)	



x 

y 



   Z. Nussinov and G. Ortiz, PNAS (2009)


d-GLSs and Topological Phases	


There is a connection between Topological Phases and the 

group generators of d-GLSs and its Topological defects	



Topological defect:	



(D=2 Orbital Compass Model)	



Defect-Antidefect pair creation	



: closed path	



: open path	



Symmetries are linking operators:	





Lower dimensional bounds	



The absolute value of the average of any quasi-local 	


quantity      which is not invariant under d-GLS        	


is bounded from above by the absolute value of the 	


mean of the same quantity when this quasi-local 	


quantity is computed with a d-dim             that is 	


globally invariant under         and preserves the range 	


of the interactions in the original D-dim system	



D-dim system with Hamiltonian 	

 and d-GLS group 	



Dimensional reduction	


C. D. Batista, Z. Nussinov (cond-mat/0410599)	





To Break or not to Break	



From the Generalized Elitzur’s Theorem:	



d=0  SSB is forbidden	



Can we spontaneously break a d-GLS in a D-dim system ?	



For non-       -invariant quantities	


(finite-range and 

strength interactions)	



d=1  SSB is forbidden	



d=2  (continuous) SSB is forbidden	


d=2  (discrete) SSB may be broken	



d=2  (continuous with a gap) SSB is forbidden 	


                      even at T=0


Transitions and crossovers are signaled by 	


symmetry-invariant string/brane or Wilson-like loops	





Example of application	



Orbital Compass Model 

x 

y 

Rotation by π 
around the y-axis 

Lowest order allowed order parameter: 

Nematic: 



Intuitive Physical Picture	



x 

y 

A soliton has 
a local energy 

cost. 

Orbital Compass Model 

2D Orbital Compass Model dual to p+ip superconducting 

array. Z. Nussinov and E. Fradkin, cond-mat/0410720 




Case I: (Exact result)  Continuous d < 2 emergent symmetry	


                                      in a gapped system, results unchanged	



Case II: Numerous systems with exact discrete d-GLSs 	


               are adiabatically connected to states where 	


                  d-GLSs are emergent; results unchanged	



Stability and Protection of symmetries	


What happens when the d-GLSs       	



        are not exact symmetries of the full H ?	



(i.e., effect of perturbations)	


Emergent Symmetries	





Holographic Entropy	



For independent d-GLSs

with d=1, degeneracy 


is exponential in the surface area of the 

system. 




Symmetry based selection rules 
          Kugel-Khomskii Hamiltonian       for 	



t2g systems	



A continuous symmetry	


(A. B. Harris et al., PRL 91, 087206 (2003))	



 

OP
γ ≡ [exp(i


SP

γ ⋅

θP

γ ) / ]

[HKK ,OP
γ ] = 0,


SP

γ =

Sr

γ

r∈P
∑

But a continuous d=2 symmetry cannot be 
broken, no long range order.


HKK



Symmetry based selection rules 
Kugel-Khomskii Hamiltonian 	



for  t2g systems.	



For a system in |xy> state,	



vanishes for non-zero z. This is so 	


as if two spins do not lie in the same plane (and thus 	



have a separation along the direction orthonormal to the planes of z=0), the two point 	


correlator is not  invariant under a continuous d=2 symmetry.   	



Other int. must be present to account for spin order. Similar considerations apply for |xz> and 	


|yz> order.  In general, if the KK  interactions are dominant	



with a,b,c orthogonal axis is the largest when a,b, and c are along the	


crystalline axis. Nematic type parameters:	



 
I (kx ,ky , z,ω ) = dkze

ikzzS(

k ,ω )∫

[I (ka ,kb ,c,ω )+ I (kb ,kc ,a,ω )+ I (kc ,ka ,b,ω )]

HKK

[2I (ka ,kb ,c,ω )− I (kb ,kc ,a,ω )− I (kc ,ka ,b,ω )]



Conclusions (new results) 
•   Orbital systems can order by thermal “order out of 

disorder” fluctuations even in their classical limit (no (1/
S) zero point quantum fluctuations are necessary). 

•   Similar to charge and spin driven quantum critical 
behavior, it is theoretically possible to have orbital order 
driven quantum critical behavior. (Prediction.)  

•   Orbital systems can exhibit topological order and 
dimensional reductions due to their unusual symmetries 
(exact or approximate).  

•  A new approach to dualities. 
•   Orbital nematic orders  (from symmetry selection rules) 

and related selection rules 
•   Orbital Larmor effects are predicted- periodic changes 

in the orbital state under the application of uniaxial strain. 


