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Spontaneous Time-Reversal 
Symmetry Breaking

● Ferromagnetic

● Non-ferromagnetic?

T



  

● p+i p superconductor (T, chirality, and gauge)

● Chiral spin liquid (T, chirality, and possibly translation)

● Varma loop (T and rotation or 2D inversion)

● DDW (T, 2D inversion and translation)

● d+i d DDW (T, translation, and chirality)

Spontaneous T symmetry breaking
without ferromagnetism



  

Experimental candidates
● Sr2 RuO4   (p + i p  s u p e rc o n d u c to r?)
● High Tc (YBa2 Cu3O6 +y and HgBa2 CuO4 +d)

Kerr rotation                              neutron scattering

J. Xia, et al, PRL, 100, 127002 (2008) B. Fauque, et al, PRL, 96, 197001 (2006)



  

Questions and Strategy
Q: mechanism
Q: classification
Q: strong coupling vs. weak coupling
Q: is lattice necessary? (flux)

Q: experimental signatures

S: 2D Fermi liquid (weak coupling)

S: general theory (classification)

S: realization in specific models



  

Road map
Fermi liquid

Dispersion relation Single particle wave function

  classification



  

Symmetry properties of the 
dispersion relation

● If ϵ(k) is not even, breaks T and I. (Type I)
● C invariant (no Hall effect)
● CIT invariant

 Time reversal: T 
  
 
 Space inversion: I

 Chirality: C 

I=Rz(π)

C

  Kai?



  

Type I T-symmetry breaking

● Breaks I and T
● Stabilized by forward scattering

Pomeranchuk instability

● Preserve C
no Hall effect at B=0

● Not a lattice effect
● Asymmetric I-V curve

I

V



  

Road map
Fermi liquid

Dispersion relation Single particle wave function

 any number of bands
 breaks T  and I 
 preserve C and IT
 Type I
 CIT invariant

 classification

Asymmetric I-V curve



  

Wave function and overlap matrix

●  Wave function:

●  Overlap matrix:

➢  Position operator:
 
➢  Diagonal terms 

 U(1)N gauge
 Berry connection 

➢  Off-diagonal terms:



  

Road map
Fermi liquid

Dispersion relation Single particle wave function

 any number of bands
 breaks T  and I 
 preserve C and IT
 Type I
 CIT invariant

 classification

Asymmetric I-V curve



  

Diagonal terms (Berry phase)
● Requires at least two bands to break T if B=0
                                                (E. I. Blount, 1962)

● Wilson loops in k space

● Hall conductivity(if the contour is FS)

– break C and T if berry phase nontrivial

● CIT symmetry

● Berry phase and anomalous Hall
Ha ld a n e , PRL 93, 2 0 6 6 0 2  (2 0 0 4 ).
● Ha lf o f WZ te rm  (S1  to  S2 )



  

Road map
Fermi liquid

Dispersion relation Single particle wave function

 any number of bands
 breaks T  and I 
 preserve C and IT
 Type I
 CIT invariant

 at least two bands
 breaks T and C
 preserve I and CT
 Type II
 CIT invariant

 classificationclassification

Spontaneously generated
anomalous Hall effectAsymmetric I-V curve



  

Off-diagonal terms
● Requires at least three bands to break T 
● Carton picture

● Rigorous proof
(E. I. Blount, 1962)

 

● Preserve C symmetry
– no Hall effect



  

Road map
Fermi liquid

Dispersion relation Single particle wave function

 any number of bands
 breaks T  and I 
 preserve C and IT
 Type I
 CIT invariant

 at least two bands
 breaks T and C
 preserve I and CT
 Type II
 CIT invariant

 at least three bands
 breaks T
 C invariant

● CIT invariance for one and two-band model
● Classification of type I and II
● Type I and II mixing: 2D multiferroics

not considered

Spontaneously generated
anomalous Hall effectAsymmetric I-V curve



  

Example I

● Break T and C
● Type II
● Insulator
● Quantized Hall conductivity at B=0

Flux state in honeycomb lattice
F. D. M. Ha ld a ne , PRL 61, 2 0 1 5  (1 9 8 8 ).



  

Example II

● Break T and I
● Type I
● no Hall effect if B=0

Varma loop state
C.M. Varma, PRB 73, 155113 (2006).



  

Example III

● Effective two-band model due to TSB
● This is the reason why TSB is needed here

DDW (type I) d+id DDW (type II)

DDW and d+id DDW
S. Chakravarty, et. al., PRB 63, 094503 (2001).

C. Nayak, PRB 62, 4880 (2000).

S. Te w a ri, e t. a l., PRL 100, 2 1 7 0 0 4  (2 0 0 8 ).
Ke rr e ffe c t in  YBCO



  

Realization

● Continuous Model ● Lattice Model

 



  

Pomeranchuk instability in a single-band model

k

k'

● Model:
● Forward scattering:

q<<k
F

● Fermion multipoles:

●
  no 



  

Two-band model

● Two bands: pseudospin S=1/2

● σμ=(I,σx,σy,σz) 
● I and σz: 

– intraband 
– Condensation implies FS distortion

● σx and σy: 
– interband
– Condensation implies FS distortion+Locking phase



  

Free energy

● Free energy

● Order parameters



  

α and β phases

 →: the relative phase between the two band

 Winding number: proportional to Berry phase
 Breaks T and rotation 
 Breaks C Anomalous Hall effect (metal)

● α phase: one nonzero order parameter

● β phase: two nonzero order parameters

 Rotational symmetry breaking
 T invariant



  

Phase Diagram at T=0

β phase

α phase

normal
phase

tricritical



  

Lattice effect part I
without band crossing

● α and β phases can be generalized
● Rotational symmetry breaking is discrete
● Square lattice: 

– Z4 rotational symmetry breaking to Z2

– β phase: Z2 X Z2

● Triangular lattice and Honeycomb lattice
– Z6 rotational symmetry breaking to Z3 or Z2

– β phase: Z2 X Z2 or Z3 X Z2

rotational time-reversal



  

Z2 X Z2 thermal transition

Z3 X Z2 thermal transition
● two transitions (Ising and 3-states Potts)
● a first order transition
● a critical region



  

Lattice effect part II
with band crossing

● Example: Graphene
● Type I: no fundamental difference
● Type II: only need one second order transition

➔  Normal phase: crossing point has Berry flux nπ
➔  Example: flux state in honeycomb lattice (graphene)

F. D. M. Ha ld a n e , PRL 61, 2 0 1 5  (1 9 8 8 ).
S. Ra g h u, e t. a l., PRL 100, 1 5 6 4 0 1  (2 0 0 8 ).

β 

α

n



  

Crossed-Chain Lattice

Emery lattice
(CuO2 Plane)

Crossed-chain lattice

u→∞
ε>>t



  

Degenerate Points
● band touching at half-filling (NOT Dirac point)

– quadratic dispersion
– “two Dirac points”

● protected by
– 4-fold rotational symmetry
– T symmetry

● unstable under interaction
– Due to the finite DOS



  

Nematic instability

Momentum space Real space

low density
high density



  

T and C symmetry breaking
(type II)

Momentum space Real space



  

Half filled crossed-chain lattice
● x=1 “cuprates”
● Infinitesimal instability
● Charge

– Nematic semi-metal
– T breaking insulator (energetically favored in weak-coupling limit)

● Spin interactions
– Ferromagnetic: T breaking insulator
– Anti-ferromagnetic:Spin Hall insulator



  

Conclusions
● General theory based on Berry phase (classification)

– Type I (T and I) and II (T and C)
– One-band model: type I only
– Two-band model: type I or II
– Multi-band models: type I, II or other
– Type II states have spontaneous anomalous Hall effect

● Without band touching, Pomeranchuk type of interactions stabilize T 
symmetry breaking phases  
– Type I: Intra-band interactions + one transition
– Type II: Inter-band interactions + two transitions

● With band touching, 
– May break T and C by a second order transition
– Crossed-chain lattice has infinitesimal instability



  

T breaking and nematic
Coincidence?

Theory:
● β phase with L=2: nematic+T breaking

● Half-filled crossed-chain lattice 
nematic and T breaking phase competing

Experiments:
● underdoped YBa2 Cu3O6 +y

nematic+T symmetry breaking
● SrRuO

Sr2 RuO4  (p + i p  s u p e rc o n d u c to r) a n d  Sr3 Ru 2 O7   (n e m a tic )

● Qu a n tu m  Ha ll flu id
T b re a k in g  b y B fie ld s  a n d  n e m a tic  a t 9 /2  fillin g



  

Thank you
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