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CDF Run II
2.7 fb-1

Run I Observation
67 pb-1
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The Tevatron
Colliding protons and anti-protons at 1.96 TeV

CDF
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~ 5 fb-1 delivered
~ 3 fb-1 in current analysis

The Tevatron

CDF

Colliding protons and anti-protons at 1.96 TeV
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How is Top Produced?
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Mostly through the Strong Force

85 % 15 %

Takes ~350 GeV to make a pair of top quarks



or Maybe there’s more....
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?

• New production mechanisms would most likely 
show up as an enhancement in the cross section

• Kaluza-Klein excitations of gluons from extra 
dimensional theories

• New gauge boson as a 
remnant of some 
higher order symmetry 
breaking, such as Z´



How Does Top Decay?
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~100 %



Top Events Are Defined By How 
The W’s Decay 
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Top Decay Channels

Di-lepton (W→lv   W→lv)
Lepton + Jets (W→lv   W→qq)
All-hadronic (W→qq   W→qq)
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Di-lepton Channel

Di-lepton (W→lv   W→lv)
Lepton + Jets (W→lv   W→qq)
All-hadronic (W→qq   W→qq)
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Lepton + Jets Channel

Di-lepton (W→lv   W→lv)
Lepton + Jets (W→lv   W→qq)
All-hadronic (W→qq   W→qq)
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All-Hadronic Channel

Di-lepton (W→lv   W→lv)
Lepton + Jets (W→lv   W→qq)
All-hadronic (W→qq   W→qq)
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Di-lepton (W→lv   W→lv)
Lepton + Jets (W→lv   W→qq)
All-hadronic (W→qq   W→qq)

New Physics Can Modify Decay
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New Physics Can Modify Decay

H-

C, τ

s, ν

Top decaying to 
charged Higgs Di-lepton (W→lv   W→lv)

Lepton + Jets (W→lv   W→qq)
All-hadronic (W→qq   W→qq)
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New Physics Can Modify Decay

Di-lepton (W→lv   W→lv)
Lepton + Jets (W→lv   W→qq)
All-hadronic (W→qq   W→qq)

H-

C, τ

s, ν

Top decaying to 
charged Higgs

20



Finding Top Is Difficult

Produce Top
~ 1 in 10 Billion 

Collisions 

It’s all about 
understanding and 

reducing backgrounds
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Identifying Top Events
• Top events have a little bit of everything:  leptons, quarks that 

form jets, neutrinos which leave missing transverse energy

• Each piece requires it’s own unique method of identification 
in the detector
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Lepton Identification

• Charged track in the tracking 
chamber

• Deposit energy in the EM 
calorimeter and little in the 
hadronic calorimeter

• Charged track in the tracking chamber

• Minimum amount of energy deposited in calorimeters 

• Identified “stub” in muon chambers

Electrons

Muons
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Jet Identification

• We’re looking for partons but we 
observe jets in the detector

• Jets are identified as cones of 
energy in the calorimeter towers

• Energy of jets are difficult to 
measure which can generally lead 
to large systematic uncertainties 
in our measurements 
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Bottom Quark Identification 
(Tagging)

• Bottom quarks generally travel a few millimeters before decay

• Look for a secondary vertex, displaced from primary, formed 
from two or more displaced tracks

• Suppresses background

• QCD without bottom/charm

• W plus light flavor jets
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The Cross-Section

Acceptance Integrated Luminosity
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• Measuring the cross-section requires a complete 
understanding of the physics in our data sample

• Result feeds into all other measurements    
(mass, properties, searches...)



History of the Top Cross 
Section at CDF
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Di-lepton Measurement In 1.2 fb-1 

Lepton + Jets B-Tag Measurement In 1.1 fb-1 

Lepton + Jets Pretag Measurement In 1.1 fb-1 

B-Tag Measurement Has Historically Been High...

Cacciari et al., arXiv:0804.2800 (2008)



Bottom Tagging in 
Lepton + Jets
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• ≥ 3 Jets ( Et ≥ 20 GeV and  η < 2.0 )

• 1 Electron or Muon ( Pt ≥ 20 GeV )

• ≥ 25 GeV Missing Transverse Energy

• ≥ 1 Bottom Tagged Jet

Bottom Tagging in 
Lepton + Jets
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Physics Processes

• ≥ 3 Jets ( Et ≥ 20 GeV and  η < 2.0 )

• 1 Electron or Muon ( Pt ≥ 20 GeV )

• ≥ 25 GeV Missing Transverse Energy

• ≥ 1 Bottom Tagged Jet

S:B ~ 1:3 → 1:1
tagging
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Monte Carlo Based
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QCD

• QCD is very difficult to model with 
Monte Carlo

• Use data-driven approach - model 
QCD by all-jets sample or sample of 
leptons which failed ID cuts
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QCD

• QCD is very difficult to model with 
Monte Carlo

• Use data-driven approach - model 
QCD by all-jets sample or sample of 
leptons which failed ID cuts

• Fit QCD and W+jets in low MET 
region - dominated by QCD

• Extract predicted fraction of events 
from QCD in signal region 

Signal
Region
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W + Jets

• W + Jets can be modeled by Monte 
Carlo but there are two difficulties 
that arise when we require a bottom 
tag

• First, the rate of tagging bottom & 
charm is over-estimated and the rate of 
mis-identifying them is underestimated

• Second, the cross-section for W 
associated with jets from bottom & 
charm is not well understood
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W + bottom/charm
• Because we’re tagging bottom quarks, the relative amount of W + heavy 

flavor events vs W + light flavor becomes important

• This is not well understood theoretically and difficult to model in Monte 
Carlo

• A data-driven approach is used to correct the fraction of the W+jets 
sample associated with heavy flavor
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KIT Flavor Separator
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CDF Run II Preliminary L = 2.7 fb• Effectively, we measure the fraction 

of W + bottom/charm in W + jets 
events in a non-signal region      
(W + 1 jet)

• Neural network used to identify 
bottom/charm/light flavor events

• Simultaneously fit for bottom, 
charm, and light flavor fractions

W + bottom/charm

• Compare to Monte Carlo to derive a correction factor and apply 
this to the W + jets prediction in the signal region
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W + light flavor (mistags)
• W + light flavor jets sneak in by a mis-identified bottom/

charm jet ( call these mistags )

• Unfortunately, monte carlo is not tuned to handle this effect

• Instead, a data-driven parameterization is used to estimate 
the probability that a given jet will be mis-tagged

• This is applied to our pre-tag data sample to produce a 
prediction of the total number of events in our tagged 
sample that are mistags
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Produces a complete prediction of 
process content across jet multiplicity
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For ≥ 3 Jets    S:B ~ 1:1

Signal Region
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More Background Reduction
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Signal Region

45



The Cross-Section

Acceptance Integrated Luminosity
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The Cross-Section

Acceptance Integrated Luminosity
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Extracting the X-section

48

• Because the background estimate is a function of the top 
cross-section it’s not so simple to calculate

• Worse, error propagation basically becomes impossible 

• What we can do is construct a Poisson Likelihood from the 
predicted number of events and the data, evaluate the 
Likelihood for a range of cross-section values, and extract 
the minimum value and the statistical uncertainty
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Measurement in 2.7 fb-1

50

@ Mt = 175 GeV/c2
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Systematics



Another Approach

• As opposed to using bottom tagging to reduce 
backgrounds, use event kinematics to distinguish signal 
from background

• More model-dependent, but increased statistics and 
no sensitivity to the last measurements two largest 
systematics
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Topological Measurement

Neural 
Network

• Feed distributions into Neural Net, trained 
to distinguish signal from background

• Fit signal and background templates to the 
data at Neural Net output
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Backgrounds
• Absolutely dominated by QCD and 

W+Jets

• For simplicity, W+Jets is used to 
model kinematics of all backgrounds 
except QCD

• QCD is modeled by data 

• All-jet model where one of the 
jets is kinematically selected to 
look like a lepton

• Electron sample where at least 
two lepton identification cuts fail
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QCD
• As in the previous measurement, 

QCD is modeled by data

• Could let QCD float in the final fit 
at neural network output

• Results in a higher systematic

• Use low missing transverse energy 
region, which is dominated by QCD, 
to constrain amount of QCD in 
signal region

Signal
Region

CDF Run II Preliminary L = 2.8 fb-1
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Topological Approach

• Total Sum Transverse Energy

• Aplanarity

• Sum Pz / Sum Et of Jets

• Sum Jet Et Excluding Two Highest

• Minimum Di-Jet Mass

• Minimum Angle Between Two Jets

• Maximum Angle of a Jet
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Kinematic Shapes In
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Neural Net Output
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Measurement in 2.8 fb-1
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Systematics
SYSTEMATIC
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Systematics
SYSTEMATIC

JET ENERGY SCALE

Q2
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MONTE CARLO 
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Previous measurement 
tagging systematic ~ 5.5%
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History of the Top Cross 
Section at CDF
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Di-lepton Measurement In 1.2 fb-1 

Lepton + Jets B-Tag Measurement In 1.1 fb-1 

Lepton + Jets Pretag Measurement In 1.1 fb-1 



Summary
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Lepton + Jets Tagging

Lepton + Jets Neural Net

Dilepton
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Ok, so we clearly understand how 
much

But can we look for cracks from 
another angle?
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The Forward Backward 
Asymmetry
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•QCD predicts an observable asymmetry ~ 4-6% due to 
diagram interference between LO and NLO 

•Parity violating new physics can appear as a large asymmetry

•Because the LHC is dominated by gg production this 
measurement is far more difficult 

Why Measure It

The Tevatron is special for this measurement
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• We have 4 jets, a lepton, and 
“Missing” energy

• It is almost impossible to discern 
the “type” of quark which 
produced a given jet

•  How do we find the top quark 
production angle from this mess?

• Use the topology to build an 
algorithm!

Reconstructing the Event
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• 4 jets must be matched to 4 partons

• 24 different combinations to choose from

• Jet and unclustered energies can vary within error

• Known Top Mass can be used as a constraint

• Choose combination with lowest χ2

Reconstructing the Event
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Reconstructing the Event
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Reconstructing the Event
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Reconstructing the Event
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Reconstructing the Event
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Reconstructing the Event
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The algorithm reconstructs the entire event:
All particle energies and angles are available 

after reconstruction

Reconstructing the Event
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 The algorithm is currently used in one of CDF’s flagship Top 
Mass measurements and in over a dozen other analyses

Reconstructed Top Mass



79

Reconstructing The 
Event

CDF Run II Preliminary CDF Run II Preliminary
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Reconstructing the 
Angle

Uncorrected

• The shape in data can be biased 
and/or diluted by backgrounds, 
acceptance effects, and poor event 
reconstruction

• Each effect has to be effectively 
corrected for to get back to a 
prediction comparable to theory



Background Correction
• Backgrounds dilute the signal 

and, if they have any asymmetric 
components, bias it

• To properly correct for this 
effect we need to know the 
prod angle shape in background

• The background Cos Θ 
distribution is formed by 
putting the background models 
through the entire selection 
and reconstruction machinery
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Background Correction

• How do we know the  
background shape is correct?

• Test in a background 
dominated side-band region 
(Anti-Tag Sample)

• Background prediction is 
consistent in this distribution
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CDF Run II Preliminary



Background Correction

• We correct for backgrounds 
by subtracting the predicted 
background shape, normalized 
by method II, from the data

• The resulting distribution is 
the predicted production 
angle shape for ttbar after 
selection and reconstruction

83

CDF Run II Preliminary



Selection and 
Reconstruction Effects

• Example production angle 
distribution with Afb = 30 %

• So what happens as these 
events are placed through 
selection and reconstruction?

Afb = 30 %
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-Ql ⋅Cos Θ

True Production Angle From MC



After Reconstruction
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Selection and 
Reconstruction Effects

After Selection

-Ql ⋅Cos Θ -Ql ⋅Cos Θ



• The effect of imperfect 
reconstruction is a smearing of 
events between bins and 
therefore a dilution of the 
front-back asymmetry

• We model this effect in ttbar 
Monte Carlo in order to 
correct the data

Reconstruction 
Corrections

86

CDF Run II Preliminary



• The smearing of the “true” 
distribution is related to the 
“reconstructed” distribution by 
a matrix

• The matrix can be inverted to 
correct for smearing 

Reconstruction 
Corrections
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CDF Run II Preliminary



Acceptance Correction

88

-Ql ⋅Cos Θ

Event Acceptance• Can do the same with event 
acceptance - only no smearing now

• The distribution “after selection” 
can be related to the “true” 
distribution again by a matrix

• The matrix can be inverted to 
correct for acceptance 



Putting It All Together

• The correction matrices are cascaded and applied to the background 
corrected data to produce a result independent of the effects of 
acceptance and reconstruction
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Measurement
• Begin with the raw 

distribution and rebin to 
create 4 uniform sized 
bins

90

CDF Run II Preliminary



Measurement
• Begin with the raw 

distribution and rebin to 
create four uniform sized 
bins

91

bin 0 bin 1 bin 2 bin 3

Data 141 77 72 194

Bkg 33.4 12.0 11.5 29.6

Bkg-Corr 107.6 65.0 60.5 164.4

CDF Preliminary  Lumi =  1.9 fb-1

Event Counts Bin-by-Bin

CDF Run II Preliminary



Measurement

• Push background corrected data through acceptance and 
reconstruction matrices

92

bin 0 bin 1 bin 2 bin 3

Data 141 77 72 194

Bkg 33.4 12.0 11.5 29.6

Bkg-Corr 107.6 65.0 60.5 164.4

• And calculate the “corrected” front-back asymmetry......
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Measurement of Afb In 1.9 fb-1

Update of this measurement coming soon...

Large Asymmetry observed in two other 
analyses - one CDF & one D0

Accepted to PRL



Measurement

94

CDF Run II Preliminary

CDF Run II Preliminary



Consistency Check
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• If I create a Monte Carlo top sample with a 
17% asymmetry does it fit the data well at the 
reconstructed level (before corrections) ?

• This is an alternative technique to the matrix 
corrections ( template method )



Template Check
Normal Monte Carlo w/ Asymmetry
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Template method agrees well with measured value

CDF Run II PreliminaryCDF Run II Preliminary



So Is It Real?

•The measured value is ~ 2 sigma from the SM and a little 
over 2 sigma from zero

•With that said, the asymmetry measurement itself does not 
necessarily reflect the difference in “shape” we see in the 
production angle

• A KS test of the shape, comparing data to prediction, reveals 
~ 1-2 % compatibility

• So I’ll hope...
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So Does The Standard 
Model Survive?

Yes, but...
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• Uncertainty on cross section is still 5-10%, 
plenty of room for ~ 0.5-1.0 pb additional 
production mechanism or anomalous decay

• Somewhat discrepant results still present in 
top physics - many still too statistically limited

• Afb

• t´ Search

So Does The Standard 
Model Survive?
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Does the Tevatron have 
one last Discovery left?

100



Does the Tevatron have 
one last Discovery left?

Current 
Results
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Does the Tevatron have 
one last Discovery left?

Current 
Results

?
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Appendix



Di-lepton Channel
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Di-lepton Channel

• ≥ 2 Jets ( Et ≥ 15 GeV and    
η < 2.4 )

• 2 Electrons or Muons ( Pt ≥ 20 
GeV ) of opposite sign

• ≥ 25 GeV Missing Transverse 
Energy

• ⎮ΔΦ⎮> 30° between MET and 
Leading Jet

105



Di-lepton Channel

• ≥ 2 Jets ( Et ≥ 15 GeV and    
η < 2.4 )

• 2 Electrons or Muons ( Pt ≥ 20 
GeV ) of opposite sign

• ≥ 25 GeV Missing Transverse 
Energy

• ⎮ΔΦ⎮> 30° between MET and 
Leading Jet
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Di-lepton Channel

S:B ~ 3:1

• ≥ 2 Jets ( Et ≥ 15 GeV and    
η < 2.4 )

• 2 Electrons or Muons ( Pt ≥ 20 
GeV ) of opposite sign

• ≥ 25 GeV Missing Transverse 
Energy

• ⎮ΔΦ⎮> 30° between MET and 
Leading Jet
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Monte Carlo Based 
Estimates
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Monte Carlo Based 
Estimates

From Monte Carlo
Measured

experiment 
or

theory
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Backgrounds
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Backgrounds
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Fakes
• Anything that can mimick one of the leptons

• Mostly QCD which cannot be estimated by a 
Monte Carlo approach

• Fakes dominate same-sign dileptons events

• If we assume the fake-rate is independent of 
charge, we can use the same sign rate to 
predict fakes in our signal region
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Backgrounds

113



Backgrounds
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Do we believe it?
• Use a side-band region, dominated by 

backgrounds, to test method 

• Di-lepton events with ≤ 1 Jets

• e-e+ and μ-μ+ dominated entirely by Drell-Yan

• More interesting are eμ events which have a 
more diverse process content
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Control Region

transverse missing energy, GeV
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Backgrounds
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Backgrounds
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Measurement in 2.8 fb-1

119



Measurement in 2.8 fb-1

120

@ Mt = 175 GeV/c2



How do the Kinematics 
Look?

lepton transverse momentum, GeV/c
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