

How the NIST F-1 Cesium Fountain Clock Works

How the NIST F-1 Cesium Fountain Clock Works

A gas of cesium atoms enters the clock's vacuum chamber. Six lasers slow the movement of the atoms, cool them to near absolute zero and force them into a spherical cloud at the intersection of the laser beams.

How the NIST F-1 Cesium Fountain Clock Works

The ball is tossed upward by two lasers through a cavity filled with microwaves. All of the lasers are then turned off.

$$\psi = |a\rangle - i|b\rangle$$

How the NIST F-1 Cesium Fountain Clock Works

Gravity pulls the ball of cesium atoms back through the microwave cavity.

$$\psi = |a\rangle - ie^{-i(E_b - hv)/\hbar} |b\rangle$$

The microwaves partially alter the atomic states of the cesium atoms.

$$\psi = \left(1 - e^{-i(E_b - hv)t/\hbar}\right) |a\rangle - i\left(1 + e^{-i(E_b - hv)t/\hbar}\right) |b\rangle$$

How the NIST F-1 Cesium Fountain Clock Works

Cesium atoms that were altered in the microwave cavity emit light when hit with a laser beam. This fluorescence is measured by a detector.

$$P_b = \left| \left\langle b \middle| \psi \right\rangle \right|^2 = \frac{1}{2} + \frac{1}{2} \cos \left((E_b - hv)t \middle/ \hbar \right)$$

The entire process is repeated until the maximum fluorescence of the cesium atoms is determined.

How the NIST F-1 Cesium Fountain Clock Works

Cesium atoms that were altered in the microwave cavity emit light when hit with a laser beam. This fluorescence is measured by a detector.

$$P_b = \left| \left\langle b \middle| \psi \right\rangle \right|^2 = \frac{1}{2} + \frac{1}{2} \cos \left((E_b - hv)t \middle/ \hbar \right)$$

The entire process is repeated until the maximum fluorescence of the cesium atoms is determined.

$$\frac{1}{\frac{hv}{\ln a}}$$

$$\frac{\delta v}{v} = 10^{-15}$$

Quantum Manipulation of Neutral Atoms Without Forces

Grad Students

Todd Johnson
Erich Urban
Thomas Henage
Larry Isenhower

Faculty

Mark Saffman Thad Walker Deniz Yavuz

University of Wisconsin-Madison

- •Rydberg Blockade physics
- •Experimental Realization of 2 qubit system
- •Two-atom blockade observations
- Extensions to ensembles

Qubits-Quantum Information

$$\alpha^2 + \beta^2 = 1$$

Classical bit can be in 0 or 1

Qubit is in superposition of $|a\rangle$, $|b\rangle$

Entanglement: pairs of Qubits cannot be

written in the form $|\psi_1\rangle|\psi_2\rangle$

Example: $|\Psi\rangle = |ab\rangle - |ba\rangle$

Superposition+Entanglement —

Quantum Info. **Processing**

Future Quantum Computer

Need to entangle a large number of near atomic clock quality qubits that are resolvable distances apart

At optically resolvable (1 μ m) distances, what is the dominant interatomic interaction?

Ground state Rb atoms

Highly excited (Rydberg) atoms, n=90

At optically resolvable (1 μ m) distances, what is the dominant interatomic interaction?

Ground state Rb atoms

$$V(R) \sim \frac{\mu^2}{R^3} \sim 10^{-20} \text{eV}$$

Highly excited (Rydberg) atoms, n=90

At optically resolvable (1 μ m) distances, what is the dominant interatomic interaction?

Ground state Rb atoms

$$V(R) \sim \frac{\mu^2}{R^3} \sim 10^{-20} \text{ eV}$$

Highly excited (Rydberg)

V(R) ~ $\frac{n^4 e^2 a^2}{R^3}$ ~ 10^{-4} eV

$$V(R) \sim \frac{n^4 e^2 a^2}{R^3} \sim 10^{-4} \text{eV}$$

Requirements for Universal Quantum Computer


```
diVincenzo:
```

state initialization

deterministic loading, optical pumping

universal set of gates:

single qubit rotations via Raman

two-qubit gates via Rydberg

qubit specific readout

addressable shelving

decoherence rate << rate of coherent operations

clock transition

scalable

diffractive & acousto-optics

Entanglement Using Dipole Blockade

n=50 Dipole-dipole shifts 10s MHz at 10 micron separations

$$U \sim \frac{n^4}{R^3}$$

Jaksch...Lukin, et al. PRL 85, 2208 (2000):

Excitation of 2 nearby atoms energetically suppressed due to dipoledipole shift

Two-atom blockade

No Interaction

With Dipole-Dipole Interaction

Dipole blockade phase gate

Rabi Flopping

" π -pulse":

 $b \Rightarrow ir$

" 2π -pulse":

 $b \Rightarrow ir \Rightarrow -b$

Initial state	π control	2π data	π control
aa	aa	aa	aa
ab	ab	-ab	-ab
ba	$e^{i\pi/2}ra$	$e^{i\pi/2}ra$	-ba
bb	$e^{i\pi/2}rb$	$e^{i\pi/2}rb$	-bb

Controlled-NOT Gate

$$\begin{vmatrix} aa \Rightarrow aa \\ ab \Rightarrow ab \\ bb \Rightarrow ba \\ ba \Rightarrow bb \end{vmatrix} = \text{C-Phase + Rabi Rotations}$$

CNOT+Rotations ⇒Arbitrary Quantum Manipulations

Features of Rydberg Blockade

- 1) Blockade only involves internal degrees of freedom
- 2) Value of dipole-dipole interaction does not need to be precisely controlled
- 3) Strong blockade gives fast gates (MHz)
- 4) For good blockade, the atoms experience no atom-atom forces!

Concept for Rydberg Atom Quantum Computer

0-0 clock transition for qubit

5-10 μ m qubit spacing for addressability

Coherent 2-photon Rydberg Excitation

Entanglement via Rydberg blockade

Single qubit rotations via Stimulated Raman

State measurement using shelving

Setup in more detail

Chamber

FORT Optics

w~2.3 μm

2W/qubit $\lambda = 1.03 \ \mu m$

8 µm

Logic Beam Optics

Shift A/O frequency to address individual qubits

Use +/- 1 order A/O for red/blue, drive w/ same VCO, compensate magnifications to get commensurate red/blue motion

Atom Detection

Andor iXon e-multiplying CCD

Switch FORT on/off @ 500 kHz

97% fidelity

Switch FORT on/off @ 500 kHz

97% fidelity

Typically 80% retention of 1 atom from shot 1 to shot 2

Single-qubit Rotations

10 G bias field added to lift Zeeman degeneracy

Light generated by μ -wave modulation of diode at 3.4 GHz, low-finesse filter cavity passes ± 1 orders.

PRL 96, 063001 (2006)

600 ns Hadamard

Cross-talk

Cross-talk $< 10^{-3}$

Ramsey Oscillations

Coherence time measurement

$$T_2 = 1/(\pi 400) = 795 \mu s$$

Figure of Merit
$$\frac{T_2}{t(\pi/2)} = 5000$$

Coherent Rydberg Excitation

Single atom Rydberg excitation

Excitation scheme

fit: Rabi frequency 490 kHz (550 kHz expected)

T2=8.1 μs vis=0.76

Visibility: Doppler Broadening

PRL 100, 113003 (2008)

Next Step: Two Atoms in Nearby Traps

Phys. Rev. A 77, 032723 (2008)

Primary errors

Excitation of 2 or more atoms AC-Stark shift of effective 2-level system

Blockade Shift

Prob of double excitation after π -pulse

$$P_2 = \frac{\Omega^2}{2B^2}$$

Average over atom pairs ij, potentials φ

$$\frac{1}{B^2} = \left\langle \frac{1}{V_{dd}^2} \right\rangle$$

Properties of Blockade Shift

Weighted very strongly toward large R
Small R behavior of potential curves hardly
matters

One or more weak potential curves can completely dominate over a large number of strong ones

$$\frac{1}{B^2} = \left\langle \frac{1}{V_{dd}^2} \right\rangle$$

$$V = \frac{e^2 n^4 a_0^2}{R^3} P_2(\theta)$$

 $P_2(55^\circ) = 0$ can be avoided in high aspect ratio traps PRA 71, 021401R(2005)

Stringent stability req.s

1 MHz Rabi flopping w/ 1% error

$$n = 50 \rightarrow 2 \text{ GHz/(V/cm)}$$

 $\rightarrow 10 \text{ kHz/(5 } \mu\text{V/cm)}$

Förster Process

No ext. field req'd

$$V_{dd} \sim \frac{p_{ns,np}p_{ns,n-1p}}{r^3}$$

$$E_{95s} - \frac{E_{94p} + E_{95p}}{2} = 160 \, MHz$$

Isotropic! (not κ)

Förster Process

No ext. field req'd

$$V_{dd} \sim \frac{\left(p_{ns,np}p_{ns,n-1p}\right)^2}{r^6 \Delta E}$$

$$E_{95s} - \frac{E_{94p} + E_{95p}}{2} = 160 \, MHz$$

Real life
$$\Delta E \neq 0$$

$B=30 \text{ kHz for } 10 \mu\text{m} \text{ cloud}$

$$|\psi_0\rangle = \frac{1}{\sqrt{107}}|(50d0)(50d0)\} + 2\sqrt{\frac{2}{107}}|(50d1)(50d-1)\} + 7\sqrt{\frac{2}{107}}|(50d2)(50d-2)\}$$

Magnetic Field/Fine Structure Mixing

B=1.3 MHz

Fine-structure mixing by V_{dd} gets rid of Förster_zero states.

 $\sigma_{y} \sim 5 \ \mu m, \sigma_{z} \sim .5 \ \mu m$

Timing

Expected residual oscillations (Doppler, finite blockade shift)
0.1--additional errors from atom loss on 1st readout,
imperfect optical pumping, and imperfect photoionization

Nature Physics 5, 110 (2009)

Demonstrates coherent control of the evolution of one atom based on the quantum state of a single additional atom 11 microns away.

French results

Grangier, Pillet, Nature Physics 5, 115 (2009)

Blockade

Sqrt(2) enhancement

Mesoscopic Dipole Blockade

Lukin...PRL **87**, 037901 (2001). : Multi-atom excitation strongly suppressed in mesoscopic cloud

Single Atom Source

dipole-dipole coupling

Protocol for single atom loading:

- trap N atoms into FORT
- pump all N atoms to lb> $|\Psi\rangle \sim |b_1...b_N\rangle$

$$|\psi\rangle\sim|b_1...b_N\rangle$$

• transfer "1" atom to la>
$$|\Psi\rangle \sim \frac{1}{\sqrt{N}} \sum_{j} |b_1..a_j..b_N\rangle$$

• eject (N-1) atoms in lb>

|r>

Single-atom Loading Fidelity

Assumes no initial N measurement

With an initial N measurement, in principle no bounds on the fidelity

Single Photon Source

Drive b-e-r-e sequence via dipole-blockade
Get entangled state

$$\Psi = \frac{1}{\sqrt{N}} \sum_{j} e^{i\phi_{j}} |0...e_{j}...\rangle$$

$$\phi_{j} = (k_{1} + k_{2} - k_{3}) \cdot r_{j}$$

Single-photon emitted

but, spatially-varying phase imprinted on atoms

Phased Array Single-Photon Source

Prob of emission in direction k

$$|\langle 0|a^+e^{-ik\cdot r}|\Psi\rangle|^2 \sim \left|\sum_j e^{-ik\cdot r}e^{i\phi_j}\right|^2$$
 Phase-matched when $\mathbf{k} = (\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3)$

N-fold enhancement in phase-matched direction

Single Qubit to Directed Photon

initialize

$$|\varphi\rangle_2 \rightarrow |\overline{a}\rangle_2$$

entangle

$$|\psi\rangle_1|\overline{a}\rangle_2 \rightarrow |\overline{a} \oplus \psi\rangle_2$$

$$|\overline{b}\rangle_2 \rightarrow |\overline{c}\rangle_2 \rightarrow |\overline{a}\rangle_2 |1\rangle_{k_4}$$

PRA 72, 022347 (2005)

Cross Entanglement

- Single atom qubits are optimal for computation but couple weakly to a single photon
- N atom ensembles couple strongly to single photons, but have shorter coherence time
- Cross entanglement combines the advantages

Potential for fast readout, quantum state transmission...

PRA 72, 022347 (2005)

<u>Summary</u>

•2-D array of addressable FORTs w/Rydberg entanglement promising approach to quantum computation

•MHz single qubit rotations demonstrated, long coherence times

•Efficient single-atom detection and preparation

•Coherent Rydberg Rabi flopping

•Demonstrated blockade between 2 atom separated by 11 μ m

