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Overview

Motivation: biological, physical, and technological

The program:
« develop and characterize new tools
« apply these to the study of biological systems

Nanofluidic devices

Solid-state nanopores
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The importance of biomolecules

 The machinery of life

» the structure and function of biomolecules like DNA,
RNA, and proteins tell us how living systems work

« Biomolecules contain information

» The distribution of biomolecules within the cell
indicates identity, activity, disease, etc.

« Sensitivity to different biomolecules is the basis of . e
medical diagnostes =

yf%‘ ?q

« Where a physicist fits in...

 Developing new tools, and exploringthe 7 ?ﬁ H’\’Q
fundamental science 3 ﬁd’@
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Condensed Matter Physics Seminar 2
University of Virginia, January 27, 2009 BROWN



Studying biomolecules at the nanoscale

Perhaps best way to study a molecule is the most direct: grab it and look at it!

o

F1 ATP-ase

Condensed Matter Physics Seminar
University of Virginia, January 27, 2009



Motivation for “"nano-biophysics”

Biomoleculesoperate...

e Under water
e At micro- and nanometre length scales

Nanofabricationallows...

e The realization of ultra-smalldevices
e The handling of tinyamounts of fluid

Micro- and nanofluidics...
e Seemnaturallysuited to studyingbiologicalsystems!
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Silicon-based nano-biophysics
(The “lab-on-a-chip" concept)

Borrows the IC's “smaller, cheaper, faster” paradigm, and its fabrication technology...

Computation
on a chip

Chemistry &
biology on a chip
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A vision for nanofluidic technology...

e The vision is to manipulate and analyze every component
of a cell in molecular detail!

 We need to explore what is possible

Current leading research is focusing on...

Applications:

Protein crystallization Protein detection and recognition
Molecular separations Haplotyping

DNA sequencing

Science:

Single-molecule dynamics (polymers, enzymes, molecular motors)

Materials science

Any an a|YSiS| Fluid dynamics and electrokinetic phenomena
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Nanofluidic devices

« Confine and transport tiny quantities of fluid and molecules

« Nanochannels are the “wires” of a lab-on-a-chip

SEM image of a 28 nm high
nanochannel cross-section

EHT = 1.20kV Signal A= InLens  Date :20 Sep 2007
WD= 2mm Photo No. =672 Time :15:17:44

« What are their transport properties?
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DNA in a pressure-driven flow

Pressure-driven A-DNA motion
in @ 500 nm high channel

Pressure gradient
applied using
water columns

/' ‘ h=170nm-3.8um 5o o
Nanochannel A K /
ZET 2

4mm
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Length dependent DNA transport
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We define the pressure-driven mobility, v, using V=vp
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Length dependent DNA transport

There are two distinct regimes for pressure-driven DNA in channels
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DNA as a random flight polymer

Equilibrium DNA conformations can be The Edwards diffusion equation
modeled using random flight statistics
; ° 2 0P(z,s)
—0%P(z,s) =
6 0S
R Hard wall boundary conditions
h
g Plz=+—,s|=0
2
h’lf\‘ The average density of DNA segments across
m} the channel is given by:
1 L
In our experiments: ,O(Z) = EJ. P(Z, S)P(Z, L —S)
0

R, = 0.29um, 0.46pm, and 0.73pum
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Modeling DNA transport

e What is the pressure-driven mobility of DNA? T
e Equilibrium DNA conformations and Poisseuille fluid ’3@
flow should apply in the low-shear limit.

h/2 h/2

V = j U.(2) p(2)dz j 0(2)dz

_h/z/ \ —h/2

fluid flow profile average DNA segment density

. . m
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Pressure-driven DNA mobility

Length-independent mobil|ty ) ] ' - Length-dependent mobility
in thin channels T in large channels
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Modeling the free energy landscape for DNA

Top view ai
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Confinement free energy

Self-exclusion energy

Entropic elasticity

Viscous energy (work)

Fixed contour length




Modeling DNA transport: single-pit occupancy
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Modeling DNA transport: double-pit occupancy

Increasing
pressure

> |

S
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The predicted transition from stochastic to
deterministic transport was observed

High
pressure

Low
pressure

Position

Direction of fluid flow
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Electro-fluidics

manipulating charged molecules with electrostatic fields

Electrostatic
fields

| DTA
AN bl
I N

Gate electrodes

Effective potential energy
A

VAR O\

Position
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The electric double layer

Debye
charged surface electrostatic @ positive ion

screening @ negative ion Screenin

length Ap g length:
x o
= o °
= ® °
= o °
- o Ap ~ 1 nm (0.1M)
— @ 10 nm (1mM)

Y :
S diffuse neutral fluid 100nm (10pm)
P y layer (for monovalent salt)

(Stern layer)
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Measuring repulsive electrostatic forces
on a single molecule in solution
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A charged rod near a charged wall

Our simple model of DNA interacting with a charged nanochannel wall follows the
method described by Onsager for colloidal particles:

The energy of a charged rod at a given distance and angle is:

The excluded width due to electrostatics incorporates the
Boltzmann factor follows:

This can be integrated, and is well approximated by:

We expect an excluded region near each wall that is a few times the Debye screening length.
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Confinement induces reproducible
changes in the size of a polymer

¥~ Silicone
0 rings

D.J. Bonthuis, C. Meyer, D. Stein, and C. Dekker
PRL 101, 108303 (2008).
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Solid-state nanopores
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Basic principles of nhanopore sensing

A @

Channel

electronic molecule sensor

T

—®
A biological nanopore asan | .
—

v Membrane @
+
DNA —>
Poly C alone Poly A alone
Poly[A30C70] “Low resolution RNA sequencing”

M. Akeson, D. Branton, J. J. Kasianowicz, E. Brandin, D. W.
Deamer, Biophysical Journal 77, 3227-3233 (1999).
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Fabricating nanopores in a
transmission electron microscope

< A

S ~ > e R e ey

200keV TEM
~800 nm Si;N,/SiO,

~20 nm SiN
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Single-DNA detection using a solid-state

Silver chloride electrodes
PDMS funnel
Electmomster (DNA introduced here)
..L 20mm-50mm contact region

Freestanding membrane
containing nanopore

Fluidic
tubing

PDMS

<T_dic sample holder
eine Glass botton
1.8 -
— 10ms
ié/ 1.7 5 - -
o 16 I
S
@)
1.8 500 bp dsDNA
added
1.4 —

J. Li, D. Stein, C. McMullan, D. Branton, M.]. Aziz
and J.A. Golovchenko, Nature 412, 166 (2001).
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DNA length discrimination by single-
molecule electrophoresis

7. 0.025 3 kb dsDNA,
‘§_ 120 mV applied potential
A
‘ ? 0.02
n
=
30.015
g
2
o 0.01
< 10 kb dsDNA,
3= : 120 mV applied potential
S0.005" 10kbdsDNA, .
0; : 60 mV applied potential
°

200 400 600 800 1000 1200
translocation time (|Ls)

The translocation time is a measure of molecular length
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The nanopore senses molecular folds!

10 kb DNA, 120 mV applied potential
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Extracting sequence information using
sequence-specific binding

2 nm

MIZF is a zinc finger
protein that binds
to dsDNA in a
sequence-specific
manner
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Controlling the translocation of DNA
using optical tweezers

locations of ZFPs

zinc finger protein —=—&

lonic current

4 Z DNA pulled
DNA x F out of nanopore
biotin/streptabidin ——3m— .
streptavidin —= Y > VA

Our goal is to generate a "DNA barcode” that contains sequence

- information in the electrical signal

polystyrene bead

Optical tweezers & nanopores first demonstrated by:

1064 fim lasar U. F. Keyser et al, Nature Physics2, 473 (2006)
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Electrostatically gated nanopores

(mimicking biology by opening and closing a pore)

Open pore Closed pore
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Probing DNA by transverse electronic tunneling

~ 2 nm nanopore
| |
I |

>

Nanopore Insulator

Metal tunneling
electrodes

Tunnel current

-n
o
o
‘.

POTENTIAL
ENERGY

Applied
* voltage

Injector

/ Insulator Water T Water Collector

DNA DNA

Perhaps metallic carbon nanotubes would make the ideal tunneling electrodes?
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Nanopores milled through CNT’'s embedded
in a silicon nitride membrane

TEM of buried CNT TEM of buried CNT

Condensed Matter Physics Seminar
University of Virginia, January 27, 2009



Idea: Sequence DNA by combining nanopores
with mass spectrometry

Vacuum chamber (mass spectrometer)

ssDNA

Single ion /

detector array

Fluid cell | DNA fragmentation Vagneic sector Signal readout
orizadi
and ionization mass filter ~ ~
lonized base - A
ST ° 9 C
w & .
S g . . . T |
I----- » RS
S% e e A
E
CE) g/ ] ® - G
= -
f Nanopore Time
] (metallized) N o

I
I

Appeal:
1) Contrast; 2) Single-ion sensitivity; 3) Bandwidth; 4) Robustness
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Conclusions

» Individual molecules can be manipulated and studied in new
ways thanks to “Lab-on-a-chip”-style nanostructures.

» Certain physical phenomena become particularly important to
the behavior of devices at the nanoscale:

o Statistical properties
» Electrostatic effects
e Molecular size exclusion

» Exciting opportunities for science and technology still await at
the nanoscale
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Ion beam sculpting a nanopore

EERRERRERR
|||Ar+ Beam |||
VILLLLLLL
SN,

Idea: gain nanometre
control by incorporating
feedback

Condensed Matter Physics Seminar

—_—

Deflection

plate control

i

<—longun

Electron gun

Temperature controlled

PC-Laloview T/ SN, membrane with

control M bowihole
T I | .
T | .
e -\ lon focusing Einzel lens
Counter
T_ 4 ijl/ < lon energy analyzer
Single ion
detector
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Discovery of a new matter transport
phenomenon

Before

Temperature = 28°C

Incident energy = 3kV

Incident flux = 47 Ar'fnm’s’

Pulsed beam duty cycle: 200ms on/1s total
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A surface diffusion model of ion beam sculpting

A cartoon of ion-induced surface diffusion

concentration
&  profile C(rt
1, distance

from center

Mobile surface
sp&cies ("adatoms”)

R(),
& hole radius id/
)
Annihilation &
by filling in
nanopore &
N
Y/
|
Creation by Annihilation at Annihilation by
ion impingement defects ("traps”) ion impingement
Y, adatoms created per ion Lifetime: 1., Adatoms within area 6,
are ejected
0 C
—C(r,t)= ¢Y,+ DV°C- - 0Co,.
ot B ise '
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The surface diffusion model
predicts the flux dependence
of nanopore formation

J. Li, D. Stein, C. McMullan, D. Branton, M.]. Aziz
and J.A. Golovchenko, Nature 412, 166 (2001).
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Information from a nanopore signal
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DNA translocation distributions
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A study of individual translocation events
reveals two distinct populations

single level events multi level events |
' 1 | ' R |
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