

Outline

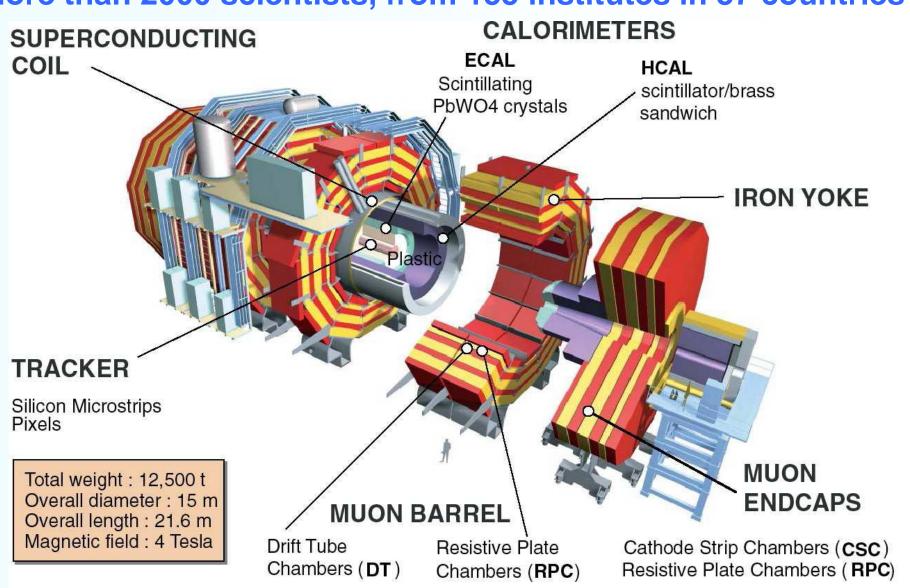
- Introduction to LHC, CMS and motivations
- Muon and di-muon trigger
- Muon and di-muon reconstruction
- Inclusive J/ψ cross-section measurement
- B fraction fit
- Misalignment effect in early data
- Systematic uncertainties
- Expected results at 3pb⁻¹
- Muon performance with cosmic muons (real data)
- Summary

The Large Hadron Collider (LHC)

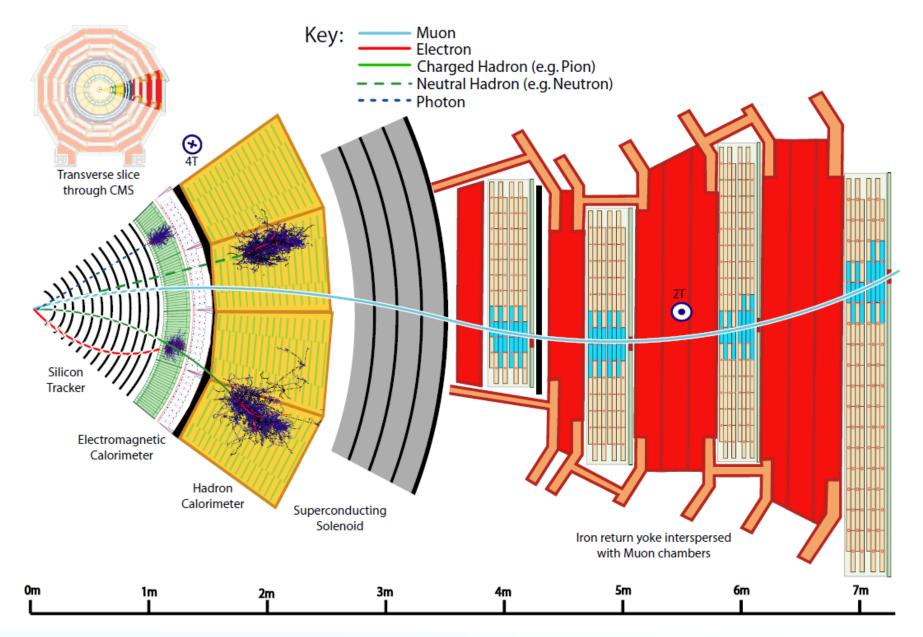
 LHC: the world's largest particle accelerator at CERN, Geneva

Circumference	26658 m
Momentum at collision	7 TeV
Design luminosity	10 ³⁴ cm ² s ⁻¹
Protons per bunch	1.15×10 ¹¹
Number of bunches	2808
Collision rate	40 MHz
Operating temperature	1.9 K

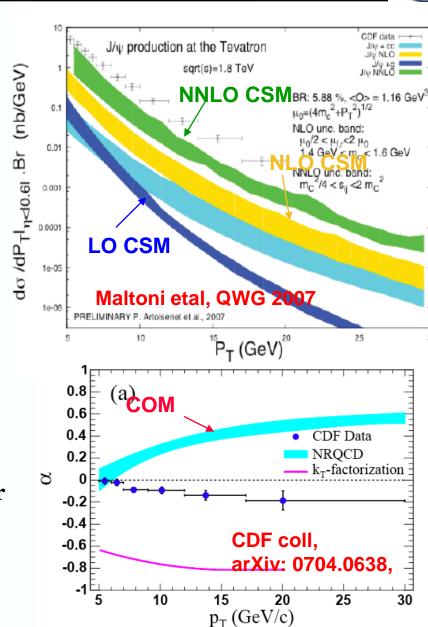
Some of the LHC parameters for *pp* operation.


•LHC experiments: ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM

The Compact Muon Solenoid (CMS)


More than 2000 scientists, from 155 institutes in 37 countries

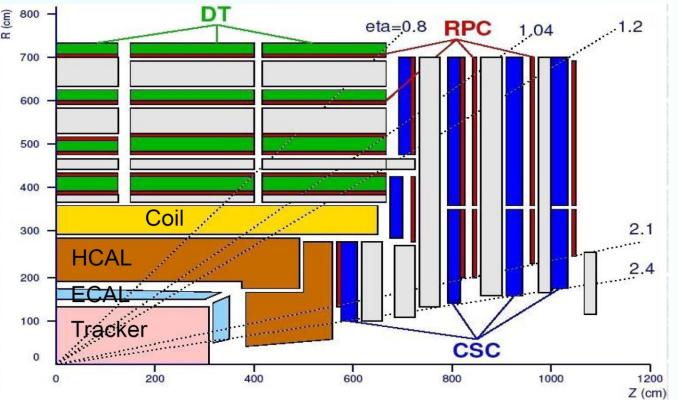
Interactions in the CMS detector



Motivations

- The J/ψ production is dominated by:
 - prompt J/ψ:
 - direct J/ψ production
 - indirect from prompt χ_{c0} , χ_{c1} , χ_{c2} ...
 - non-prompt J/ψ: from B hadrons decay
- Prompt puzzle: no satisfactory models fit x-section and polarization simultaneously, for example :
 - CSM (Color Singlet Model): LO, NLO, NNLO
 - can not explain the cross section
 - COM (Color Octet Mechanism): NRQCD
 - COM means polarization
- Motivations:
 - Quarkonia production and polarization for theoretical interest
 - J/ψ and Y are crucial to understand the detector performance:
 - alignment and calibration
 - muon efficiency
 - Can be done with first data, <=10pb⁻¹

CMS Detector for Quarkonia



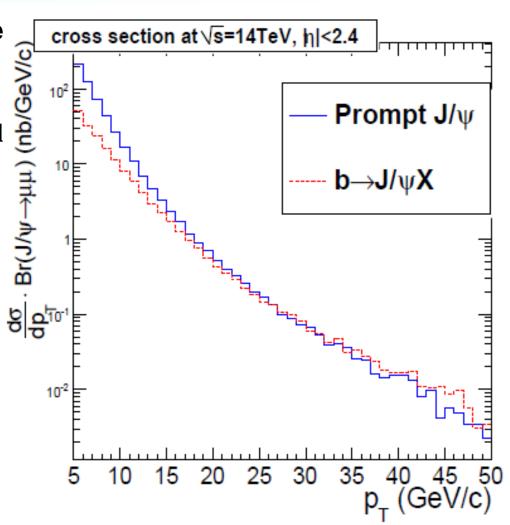
Muon system:

- Drift Tubes (DT) in central barrel region
- Cathode Strip Chambers (CSC) in endcap region
- Resistive Plate Chambers (RPC) in barrel and endcap

Tracker system:

- •Silicon pixel layers (3 in barrel, 2 in endcap)
- •Silicon strips layers (10 in barrel, 12 in endcap)

- precise measurement of position (momentum)
- **→** fast info for LVL-1 trigger

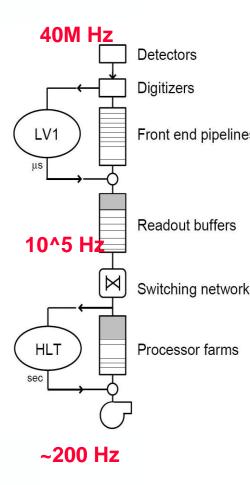

- Excellent coverage:
- ~5 units of rapidity and 2π of ϕ
- Strongest magnetic field:
- 4 T, 2 T (return yoke)
- Tag from muon stations, momentum resolution from Silicon tracker:
- ~2% of momentum resolution for tracks with p_⊤ <100 GeV
- Ecal+Hcal+Coil absorbs hadrons

Charmonium generation

- Prompt J/ψ production: NRQCD COM+CSM processes in Pythia (see backup slides) with NRQCD matrix elements from: hep-ph/0003142
 - CSM values extracted from potential models (hep-ph/9503356)
 - COM values from CDF data
 - Total 0.3846 mb at 14 TeV
- B hadrons production: MSEL=1 in Pythia and decay with EvtGen
 - gluon fusion (50μb)
 - gluon splitting (190μb)
 - flavor excitation (220μb)
- Prediction of the differential crosssection of prompt J/ψ and B-decay J/ψ at LHC, 14TeV (right).

The L1 and HLT muon trigger

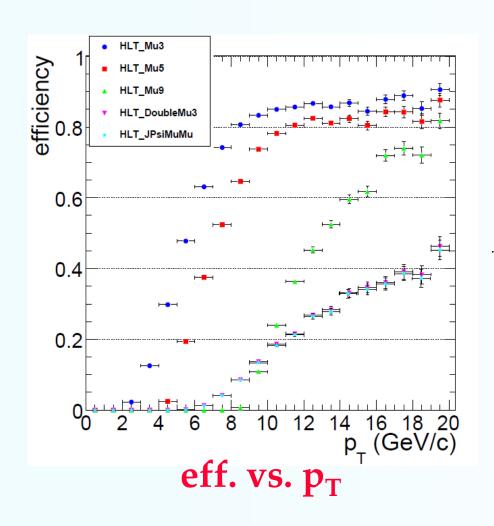
CMS muon trigger

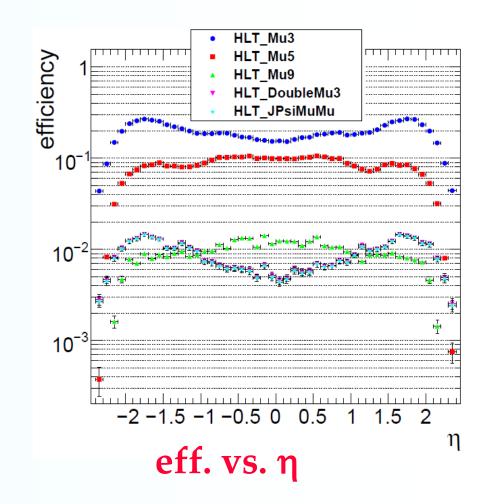


HLT path	L1 seeds	Description
HLT_Mu3	L1_SingleMu3	one L3 muon pT>3 GeV/c, η <2.1
HLT_Mu5	L1_SingleMu3	one L3 muon pT>5 GeV/c, η <2.1
HLT_Mu9	L1_SingleMu7	one L3 muon pT>9 GeV/c, η <2.1
HLT_DoubleMu3	L1_DoubleMu3	two L3 muon pT>0 GeV/c, η <2.4
HLT_JPsiMuMu	L1_DoubleMu3	two L3 muon pT>0 GeV/c, $ \eta $ <2.4 , mass window cut [2.8, 3.4]
HLT_UpsilonMuMu	L1_DoubleMu3	two L3 muon pT>0 GeV/c, $ \eta $ <2.4 , mass window cut [8, 12]

For example, the CMS dimuon trigger:

- L1 filter: hardware-based
 - DT's range $|\eta|$ <1.2; CSC 0.9< $|\eta|$ <2.4; RPC $|\eta|$ <2.1
 - Two L1 muons $p_T>3GeV/c$, $|\eta|<2.5$
- HLT L2 filter: on-line reconstructed L2 muons from the muon system (DT, CSC)
 - Two L2 muons $p_T>3GeV/c$, $|\eta|<2.5$
- HLT L3 filter: using L2 muons as input and constrain to the interaction region in the silicon tracker.
 - Two L3-μ p_τ>3GeV/c, |η|<2.5


CMS trigger system

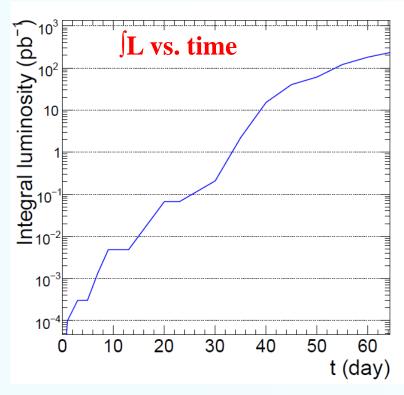


J/ψ HLT trigger efficiency

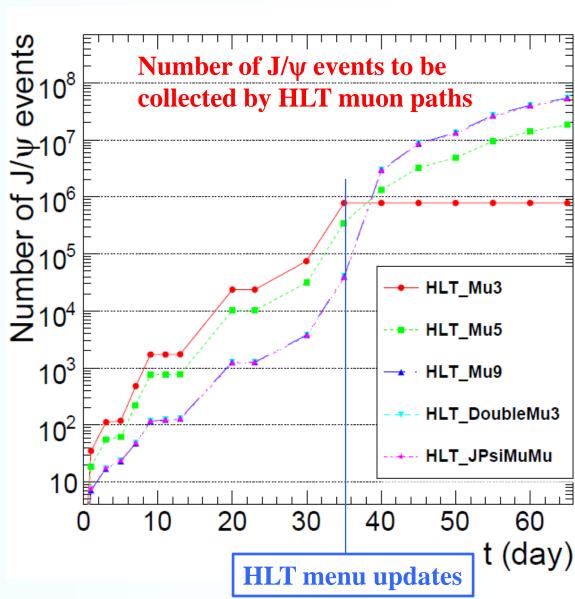
The pre-scale factors and trigger rates

•The prescale factors and unprescaled trigger rates at luminosity = 8E29 cm⁻²s⁻¹.

HLT path	Prescale	Prompt J/ψ	B-decay J/ψ	background	Total
HLT_Mu3	1	0.256 Hz	0.0838 Hz	15.6 Hz	15.9 Hz
HLT_Mu5	1	0.107	0.0472	6.23	6.38
HLT_Mu9	1	0.0116	0.00886	0.814	0.834
HLT_DoubleMu3	1	0.0120	0.00793	0.122	0.142
HLT_JPsiMuMu	1	0.0117	0.00630	0.00294	0.0209


•The prescale factors and unprescaled trigger rates at luminosity = $1E31 \text{ cm}^{-2}\text{s}^{-1}$.

HLT path	Prescale	Prompt J/ψ	B-decay J/ψ	background	Total
HLT_Mu3	infinity	3.20 Hz	1.05 Hz	195 Hz	None
HLT_Mu5	25	1.34	0.590	77.4	79.8 Hz
HLT_Mu9	1	0.145	0.111	10.2	10.5
HLT_DoubleMu3	1	0.150	0.099	1.53	1.78
HLT_JPsiMuMu	1	0.146	0.079	0.037	0.261



Expected number of J/ψ events

- •In the first run of 2009-2010, the total integral luminosity is about 200 pb^{-1} .
- •The new plan is to measure the cross section at 3pb⁻¹ by using HLT_Mu3 path.

Muon and J/ψ reconstruction

Reconstructed muons and J/ws

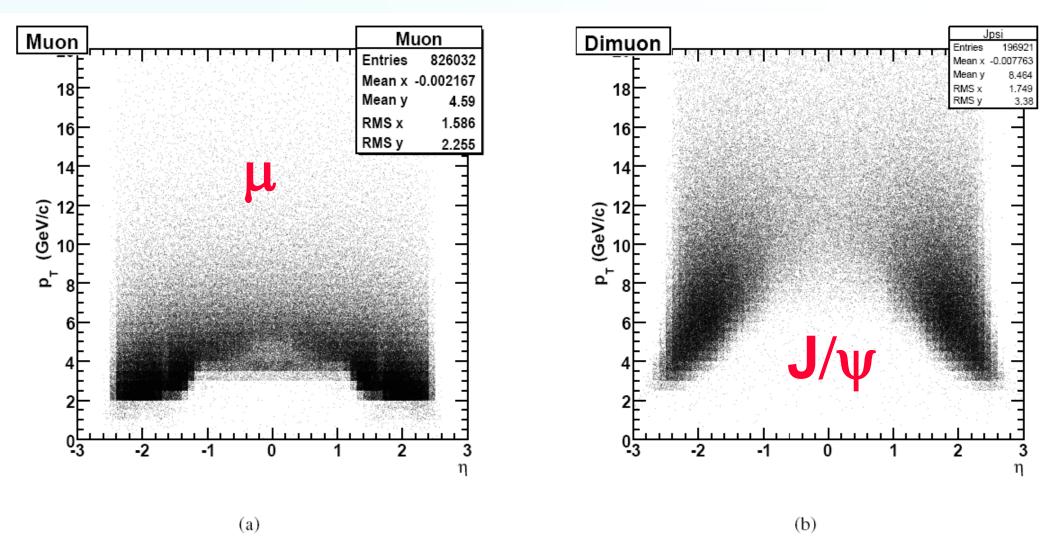
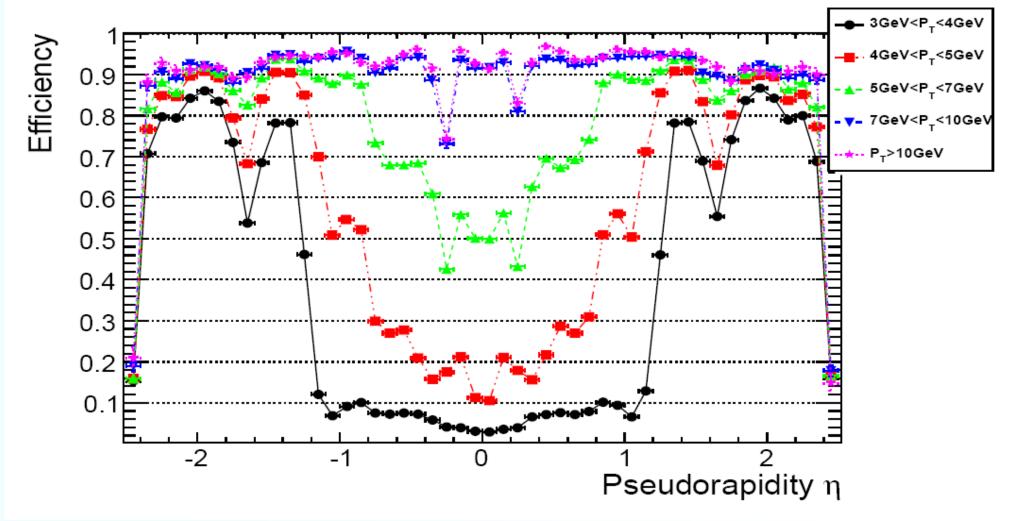
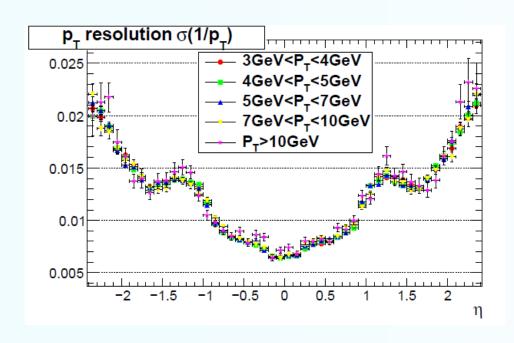
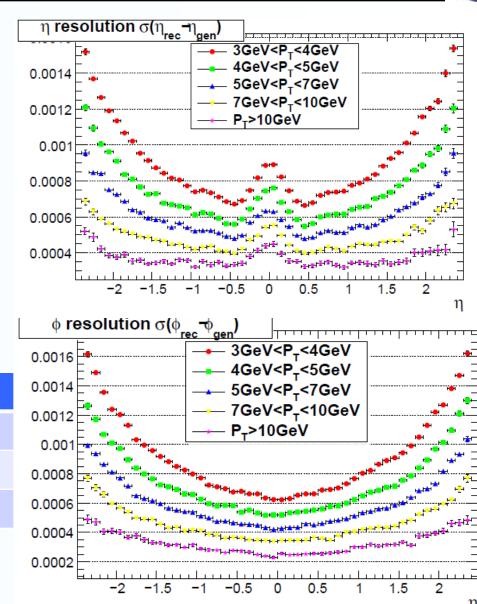



Figure 7: The η and p_T 2D distributions of muon and prompt J/ψ for reconstructed J/ψ -events.

Muon Acceptance

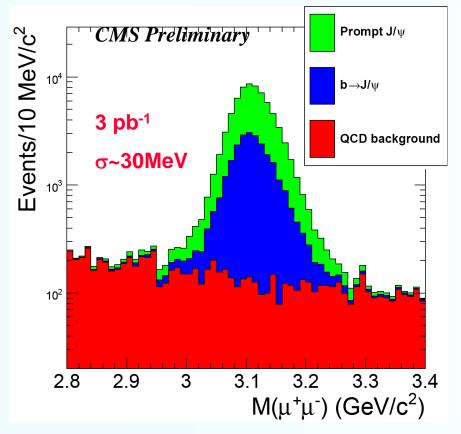


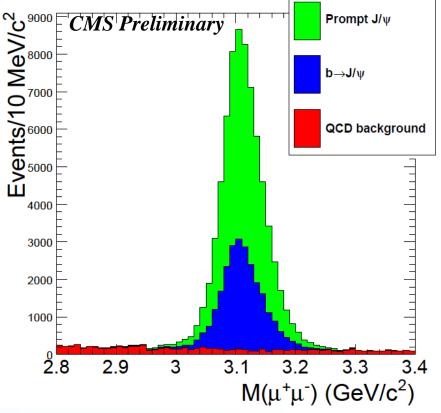
•We calculated the efficiency by matching the global reconstructed muon with MC truth: (1) same charge, (2) $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}$, (3) $\Delta p_T/p_T < 0.2$



Muon reconstruction performance

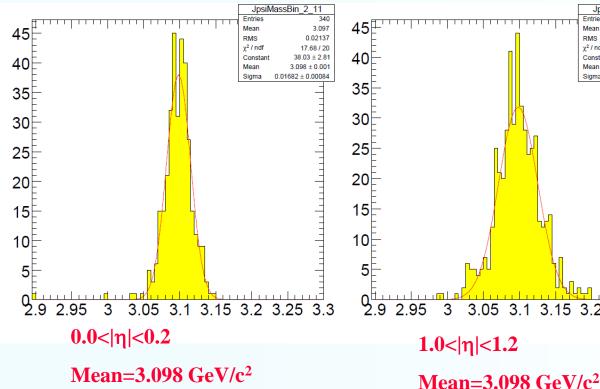
	barrel	transition	end-cap
$\sigma(1/p_T)$	0.6~1.0%	1.1~1.5%	1.5~2.3%
$\sigma(\eta)$	0.0003~0.0016		
$\sigma(\phi)$	0.0002~0.0016		



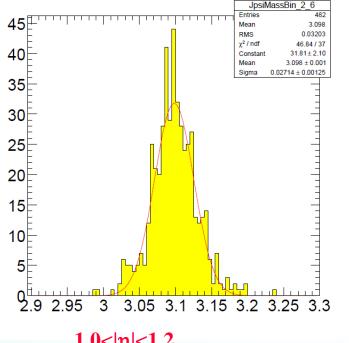

J/ψ selection

- We selected reconstructed global muon pairs by requiring:
 - 1. HLT_DoubleMu3 trigger
 - 2. Opposite charge.
 - 3. Each muon $p_T>3GeV/c$, $|\eta|<2.4$.
 - 4. Dimuon invariant mass between 2.8 to 3.4GeV/c².
 - 5. Two muons come from a common vertex.

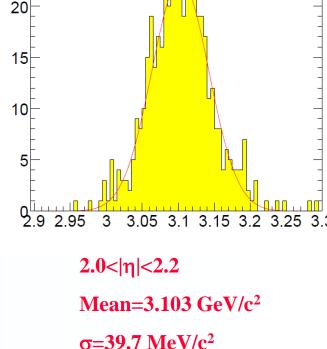
Offline selection criteria will depend on the trigger selection.



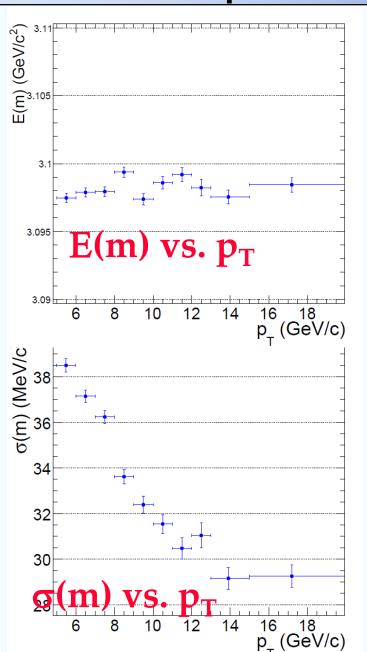
J/w mass distribution

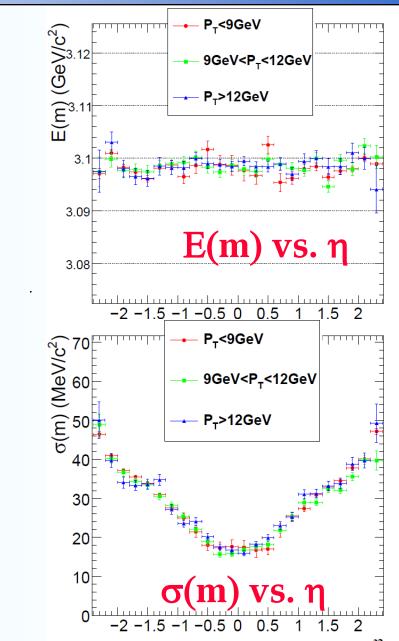


3.103


•We divided J/ ψ into p_T and η bins and fit the mass distribution in each bin with a single Gaussian:

 $\sigma=16.8 \text{ MeV/c}^2$


 $\sigma = 27.1 \text{ MeV/c}^2$



J/ψ mass resolution

Inclusive J/ψ cross-section

Measurement of Cross-section

 Following the CDF measurement, the inclusive J/ψ crosssection is determined by

$$\frac{d\sigma}{dp_T}(J/\psi) \cdot Br(J/\psi \to \mu^+\mu^-) = \frac{N_{J/\psi}^{sig}}{\int Ldt \cdot A \cdot \lambda_{trigger}^{corr} \cdot \lambda_{reco}^{corr} \cdot \Delta p_T}$$

- 1. $\int Ldt$: the integral luminosity
- 2. ΔP_T : the size of the pT bin. We divided into 15 bins from 5 to 40~GeV/c
- 3. N_{sig} : the number of reconstructed J/ys from fitting
- 4. A : the total efficiency determined from MC simulation
- 5. $\lambda_{trigger}^{corr}$ and λ_{reco}^{corr} : correction factors to the trigger and offline efficiencies, as measured in data compared to the MC.

J/ψ mass fitting

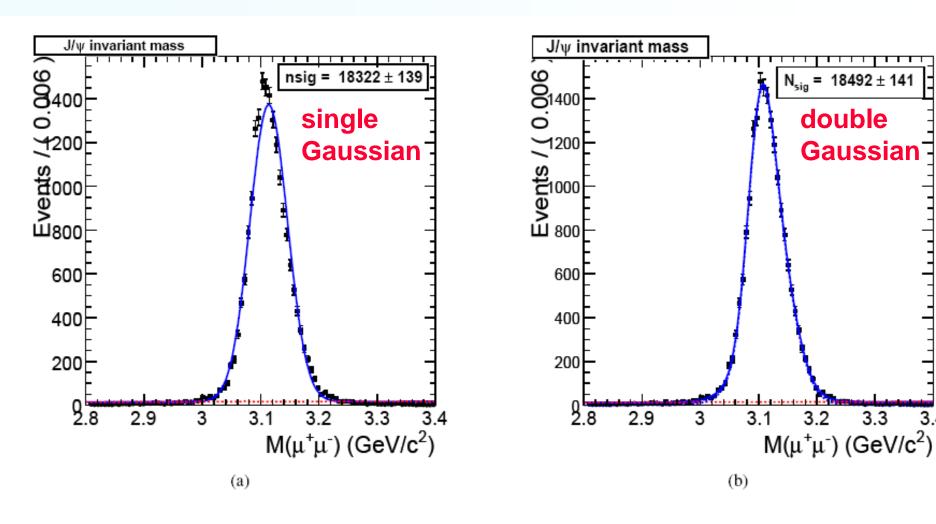
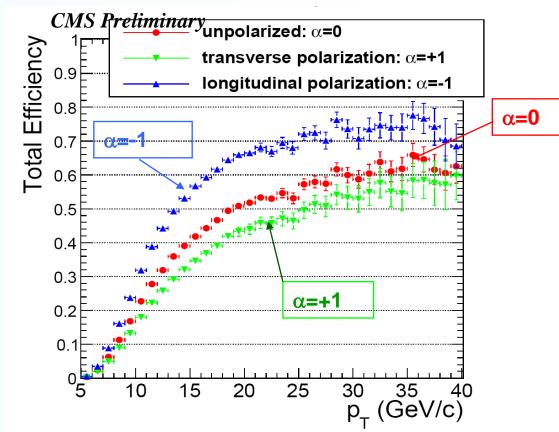


Figure 18: Mass distribution fit with linear background and signal peak of a simple Gaussian (a) or double Gaussian (b) in pT range $9\text{GeV/c} < p_T < 10\text{GeV/c}$.

Total selection efficiency

$$A(p_{T}^{J/\psi},\eta^{J/\psi})\!=\!rac{N_{J/\psi}^{rec}(p_{T}^{J/\psi},\eta^{J/\psi})}{N_{J/\psi}^{gen}(p_{T}^{J/\psi},\eta^{J/\psi})}$$



J/w rest frame lab direction

$$I(\cos\theta) = \frac{3}{2(\alpha+3)}(1+\alpha\cos^2\theta)$$

Total efficiency includes: • detector acceptance

- trigger efficiency
- offline efficiency

- •Here we take existing measurements as default (CDF for prompt, BaBar for non-prompt), uncertainty in systematic error analysis.
- •Polarization measurement at CMS will be done too.

Correction factors

•The J/ ψ reconstruction efficiency can be expressed by:

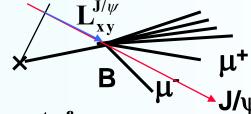
$$\epsilon_{offline}^{J/\psi}(p_T^{J/\psi}, \eta_{J/\psi}, \theta_{J/\psi}) = \epsilon_{\mu_1}(p_T^{\mu_1}, \eta_{\mu_1}) \times \epsilon_{\mu_2}(p_T^{\mu_2}, \eta_{\mu_2}),$$

- •Muon reconstruction efficiency can be measured from data by Tag&probe method.
- •Tag&probe can be used both on MC events or real data. Thus the correction factor is:

$$\lambda_{reco}^{corr}(p_T^\mu,\eta^\mu) = \frac{\epsilon_{data}^\mu(p_T^\mu,\eta^\mu)}{\epsilon_{MC}^\mu(p_T^\mu,\eta^\mu)}$$

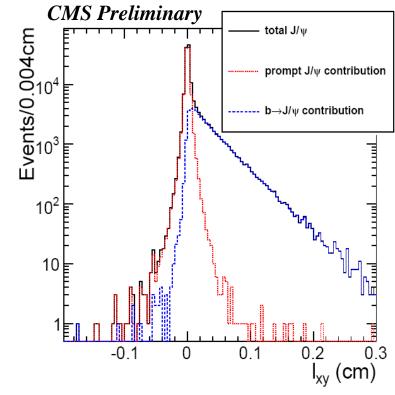
- $\lambda_{reco}^{corr}(p_T^{\mu}, \eta^{\mu})$ is ideal to be 1 if the MC simulation is perfect.
- Absolute muon efficiency is difficult to obtain at low p_T.
- •Correction factors to the J/ψ trigger efficiency can be determined in a similar way.

B fraction fit



B fraction fit (1)

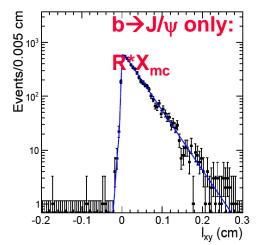
• To distinguish b \rightarrow J/ ψ from prompt J/ ψ , we use the pseudo-proper decay length:


$$\ell_{xy} = \frac{L_{xy}^{J/\psi} \cdot M^{J/\psi}}{P_T^{J/\psi}}$$

 $L_{xy}^{J/\psi}$ is the transverse component of decay length in lab system

1 Prompt J/ψ: decays at the primary vertex (red), described with resolution function: double Gaussian + double-sided exponential,

$$F_p(\ell_{xy}) = R(\ell_{xy}, \sigma)$$

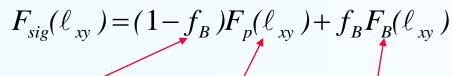


2 Non-prompt J/ψ : B-hadrons have long lifetimes:

$$F_{B}(\ell_{xy}) = R(\ell_{xy} - \ell_{xy}^{'}, \sigma) \otimes X_{mc}(\ell_{xy}^{'})$$

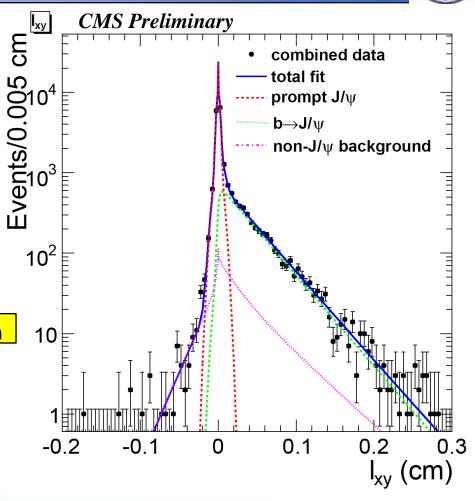
 $X_{mc}(\ell_{xy})$ is the b \rightarrow J/ ψ lifetime distribution, an exponential function convoluted with a Gaussian.

B fraction fit (2)


- Unbinned Maximum Likelihood fit is used.
 - Both pseudo-proper decay length and invariant mass distributions are used.
 - Likelihood of mass signal and side-band events are minimized simultaneously.
- The likelihood function is:

$$\ln L = \sum_{i=1}^{N} \ln F(\ell_{xy}, m_{\mu\mu})$$

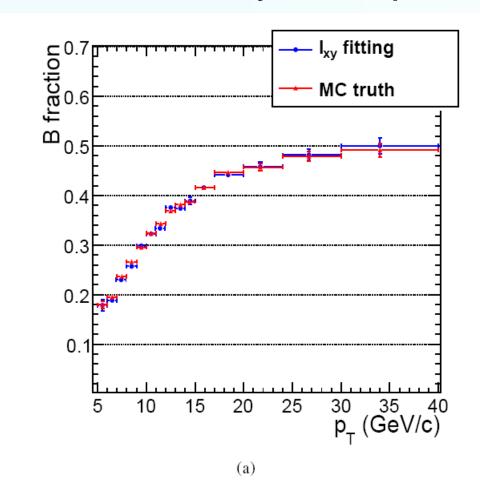
$$Double Gaussian$$


$$F(\ell_{xy}, m_{\mu\mu}) = f_{sig} F_{sig}(\ell_{xy}) M_{sig}(m_{\mu\mu})$$

$$+ (1 - f_{sig}) F_{bkg}(\ell_{xy}) M_{bkg}(m_{\mu\mu})$$

B fraction: what we want

$$R(\ell_{xy},\sigma) \quad R(\ell_{xy}-\ell_{xy},\sigma) \otimes X_{mc}(\ell_{xy})$$


Example of B fraction fit in J/ψ p_T bin 9-10 GeV/c

B fraction fit result

The fit result is very well compared to the MC truth.

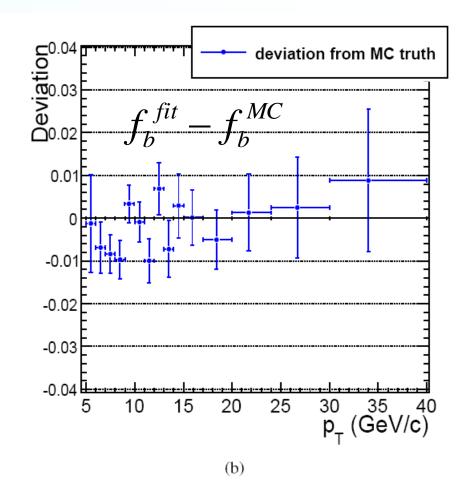
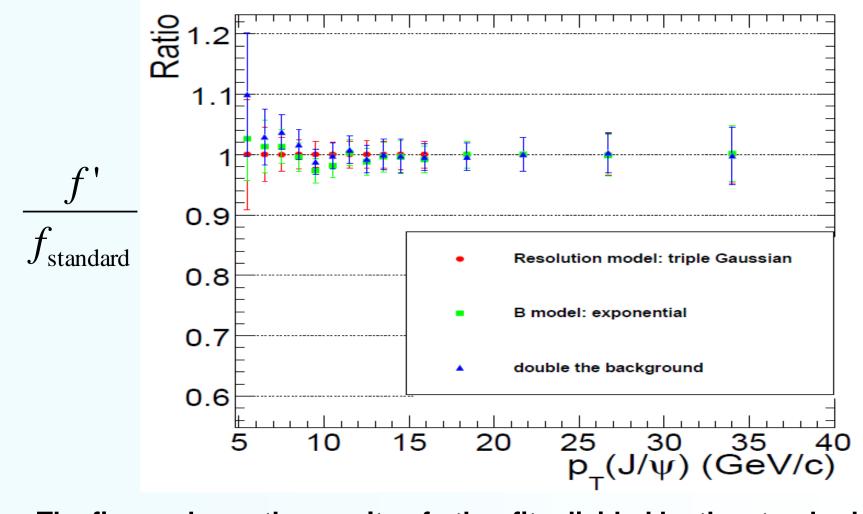
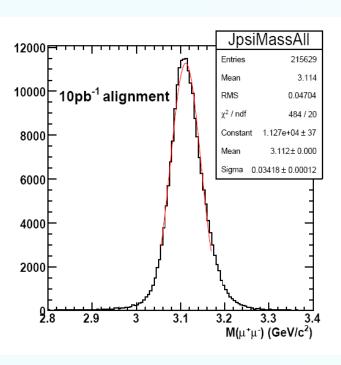
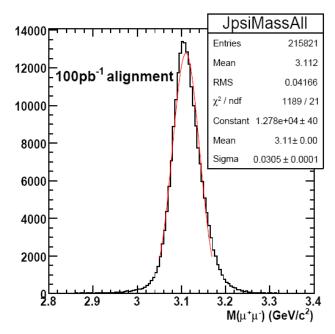



Figure 25: (a) B fraction from fitting (dot) and the MC truth (triangle) (b) the deviation of B fraction from MC truth. The unbinned maximize likelihood fitting provides the correct results, within the range of three σ .

Validation of B fraction fit

- The figure shows the results of other fits divided by the standard fitting, and the differences are considered as systematic uncertainties (see slide 35).
- Systematic uncertainties in B fraction fit seem small.


Misalignment



Mass resolution

•Plots of J/ ψ invariant mass distribution in 10pb⁻¹, 100pb⁻¹ and ideal conditions. And table 5 gives the numbers of the mass resolutions.

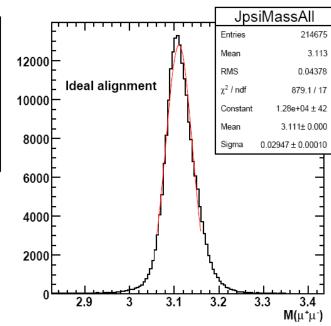
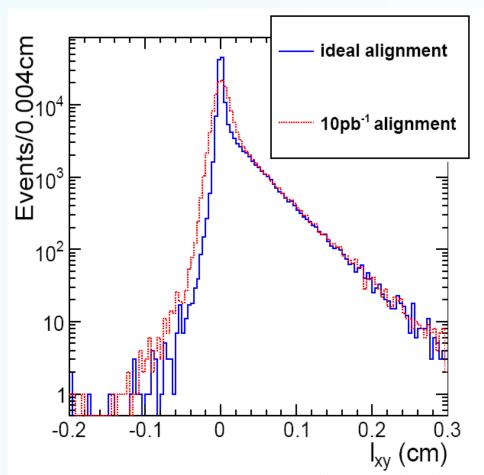
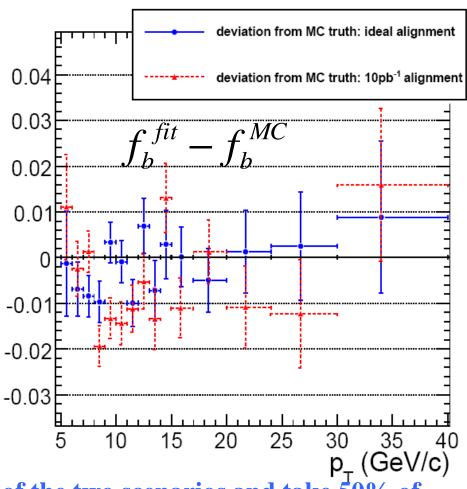


Table 5: J/ψ mass resolution in different misalignment scenarios


, .			
	10pb^{-1}	$100pb^{-1}$	ideal
J/ψ mass resolution	34.2MeV	30.5MeV	29.5MeV



B fraction

- Left: Misalignment effects on the pseudo-proper decay length distribution.
- Right: We fitted the B fraction in 10pb⁻¹ sample and compared with MC and result in ideal.

•We conclude that there is no bias in neither of the two scenarios and take 50% of the difference as a systematic error.

Systematic uncertainties

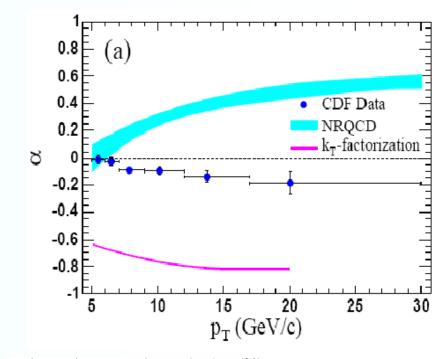
Summary of systematic errors

Table 6: Summary of possible systematic uncertainties in the J/ψ cross-section measurement in CMS early data. All the uncertainties are p_T -depended, except the uncertainty from luminosity. The total uncertainty is about 10% in the region $p_T > 20 \text{GeV/c}$ and 16% at the first p_T bin 5-6GeV/c.

Parameter	Source	Size	
Luminosity	Luminosity	$\sim 5\%$	
Number of J/ψ	Mass PDF	1.6 - 9.5%	
Number of J/ψ	Momentum scale	$\sim 1\%$	
Acceptance	J/ψ polarization	1.8 - 7.0%	
Acceptance	p_T spectrum	0.1 - 10%	
Acceptance	MC statistics	0.53 - 1.7%	
$\epsilon_{reconstruction}$	Determine in tag-and-probe	$\sim 5\%$	
$\epsilon_{trigger}$	$\epsilon_{trigger}$ Determine in tag-and-probe		
B fraction	Resolution model	0 2.6%	
B fraction	B-decay J/psi model	0.01 - 0.05%	
B fraction	Background	$\sim 1.5\%$	
B fraction	B fraction Misalignment		
total 10% - 16%			

Only for the prompt and non-prompt cross section

- •The total uncertainties is about 10% in pT above 20GeV, and 16% at the first p_T bin
- •The most important uncertainties will be shown, and others are in backup slides.


Uncertainties: J/ψ polarization

- What we used:
 - Prompt J/ψ:
 - CDF, arXiv:0704.0638v1 (2007)
 - B-decay J/ψ: α_B =-0.13 ± 0.01
 - BaBar, PRD 67, 032002 (2003).
- We used the mean value and varied it by $\pm \sigma$:
 - $\rightarrow \alpha = x, \alpha_{+} = x + 3\sigma, \alpha_{-} = x 3\sigma$
 - With α, α₊, α₋, we have acceptances: A, A₊, A₋
 - \rightarrow $A_{+} < A < A_{-}$

$$rac{\Delta\sigma}{\sigma} = rac{A_* - A}{A}$$

$$\Delta \sigma / \sigma_{sys} = 1.8 \sim 7.0 \%$$

$p_T \left(\text{GeV}/c \right)$	$\langle p_T \rangle$ (GeV/c)	f_{bkd} (%)	α
5-6	5.5	2.8 ± 0.2	$-0.009 \pm 0.029 \pm 0.007$
6 - 7	6.5	3.4 ± 0.2	$-0.022 \pm 0.028 \pm 0.007$
7 - 9	7.8	4.1 ± 0.2	$-0.088 \pm 0.023 \pm 0.007$
9 - 12	10.1	5.7 ± 0.3	$-0.094 \pm 0.028 \pm 0.007$
12 - 17	13.7	6.7 ± 0.6	$-0.139 \pm 0.043 \pm 0.007$
17 - 30	20.0	13.6 ± 1.4	$-0.187 \pm 0.090 \pm 0.007$

•arXiv:0704.0638v1 (2007)

Uncertainties: p_⊤ spectrum

- The J/ψ p_T spectrum is the subject of this analysis.
- The Acceptance from MC in each p_T bin depends on the generated spectrum.
- In order to estimate this systematic, we take the difference between the flat spectrum and the generated one:
 - For each p_T bin, we divided into 4 smaller bins of equal p_T size:
 - Calculate each small bin's acceptance:

$$\Delta A = \sum_{i=1}^{4} A_i - \frac{\sum_{i=1}^{4} A_i N_i}{\sum_{i=1}^{4} N_i}$$

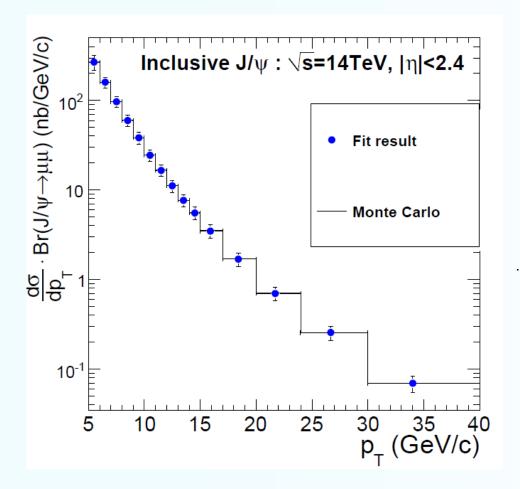
• Δ A/A gives a uncertainty from 0.1 to 10%.

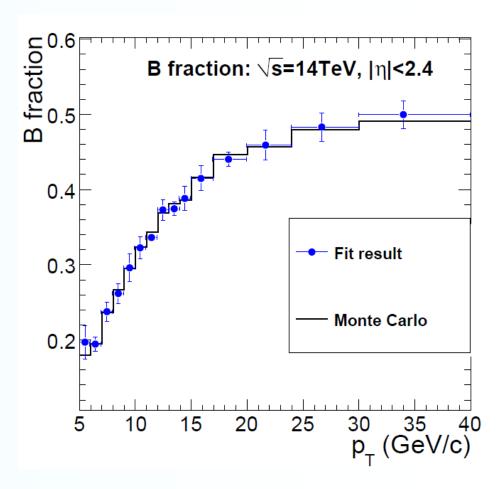
Uncertainties: others

- Mass fit: we split each p_T bin into three separate $|\eta|$ regions (0. 0.8 1.6 2.4) and fit each region with a single Gaussian. The difference with respect to a single η bin and double Gaussian is taken as systematics.
 - 1.6 **-** 9.5%
- Residual misalignment effect: the B fraction fitting result in 10pb⁻¹ and ideal alignment is shown in slide 29. We conclude that there is no bias in neither of the two scenarios and take 50% of the difference as a systematic error.
 - 0.7 **-** 3.5%
- The luminosity uncertainty is supposed to be 5%, and the errors from Tag&Probe are also considered as 5%.
- More details in the backup slides.

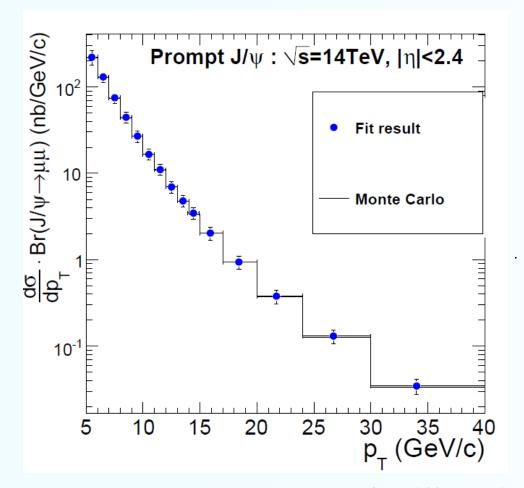
Results

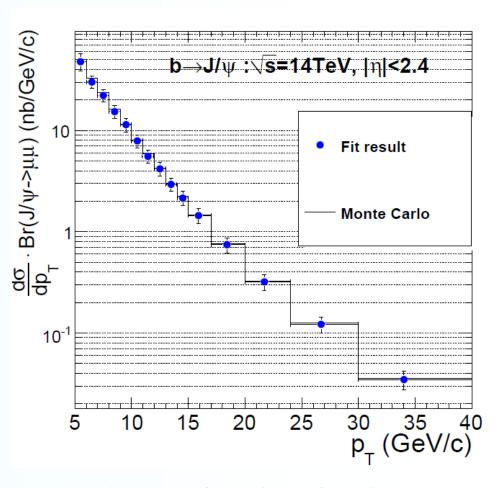
Summary table


Table 8: The prompt and B-decay J/ψ differential cross sections as a function of p_T with statistical and systematic uncertainties. The cross section in each p_T bin is integrated over the η range $|\eta| < 2.4$. The Monte Carlo input values are listed in the last 2 columns.


p_T	$d\sigma/dp_T \cdot Br(nb/(GeV/c))$		MC input values (nb/(GeV/c))	
GeV/c	prompt J/ψ	B-decay J/ψ	prompt J/ψ	B-decay J/ψ
5-6	$220\pm5(stat)\pm41(syst)$	$47.8 \pm 3.2 (stat) \pm 8.9 (syst)$	217	50.6
6-7	130±2±18	30.2±1.0±4.1	127	32.9
7-8	$74.9\pm0.7\pm10.2$	22.2±0.5±3.0	73.6	23.8
8-9	44.5±0.4±6.3	15.4±0.3±2.2	43.8	16.4
9-10	$26.9 \pm 0.3 \pm 4.0$	$11.4 \pm 0.2 \pm 1.7$	27.1	11.5
10-11	16.6±0.2±2.4	$7.91 \pm 0.13 \pm 1.14$	16.7	8.09
11-12	$11.1 \pm 0.2 \pm 1.6$	$5.53 \pm 0.10 \pm 0.81$	10.9	5.88
12-13	$6.97 \pm 0.10 \pm 1.06$	$4.19 \pm 0.08 \pm 0.64$	7.03	4.23
13-14	$4.80 \pm 0.07 \pm 0.72$	$2.87 \pm 0.06 \pm 0.43$	4.76	2.98
14-15	$3.39 \pm 0.06 \pm 0.54$	$2.16\pm0.05\pm0.35$	3.35	2.23
15-17	2.03±0.03±0.35	$1.45 \pm 0.03 \pm 0.25$	2.03	1.48
17-20	$0.942 \pm 0.016 \pm 0.158$	$0.745 \pm 0.015 \pm 0.12$	0.934	0.765
20-24	$0.379 \pm 0.009 \pm 0.067$	$0.320 \pm 0.008 \pm 0.057$	0.377	0.325
24-30	$0.131 \pm 0.004 \pm 0.024$	$0.122 \pm 0.004 \pm 0.022$	0.128	0.125
30-40	$0.0347 \pm 0.0015 \pm 0.0071$	$0.0347 \pm 0.0015 \pm 0.0071$	0.0333	0.0356

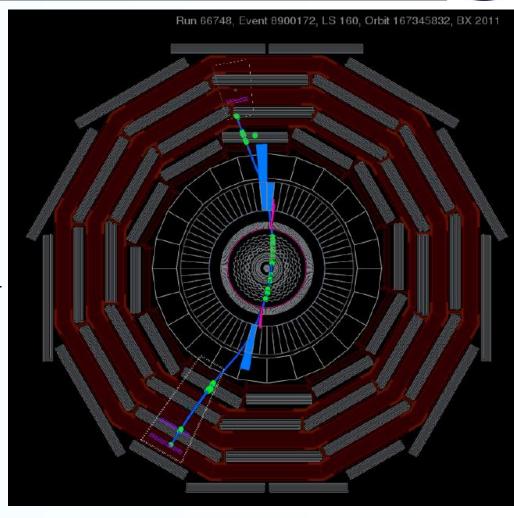
Inclusive J/\psi cross section and B fraction




- •The inclusive J/ ψ differential cross-section as a function of p_T , integrated over the pseudorapidity range $|\eta|<2.4$, corresponding to a integral luminosity of 3pb⁻¹.
- •Results of B fraction fit.

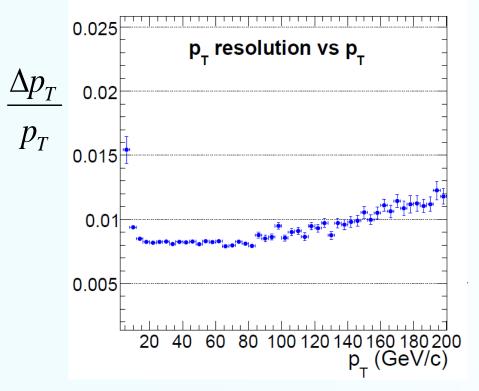
Prompt and non-prompt J/ψ cross section

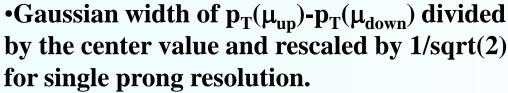
- •The prompt and non-prompt J/ ψ differential cross-section as a function of p_T , integrated over the pseudorapidity range $|\eta|<2.4$, corresponding to a integral luminosity of 3pb⁻¹.
- •This study is expected to be the first physics paper with real collision data in CMS.

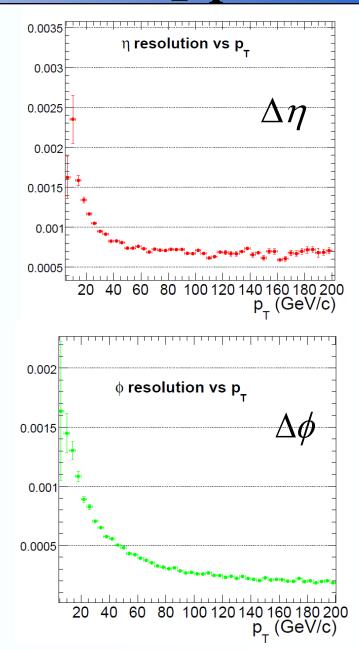

Cosmic Muon Study

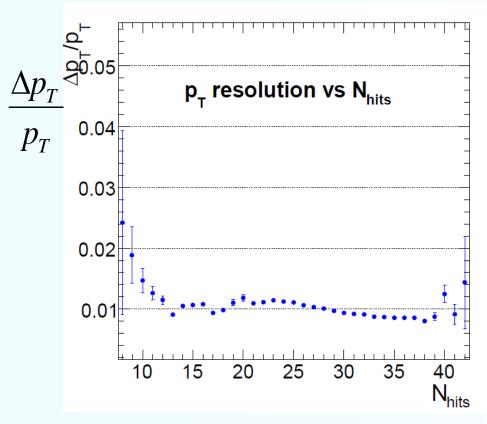
Cosmic muon reconstruction

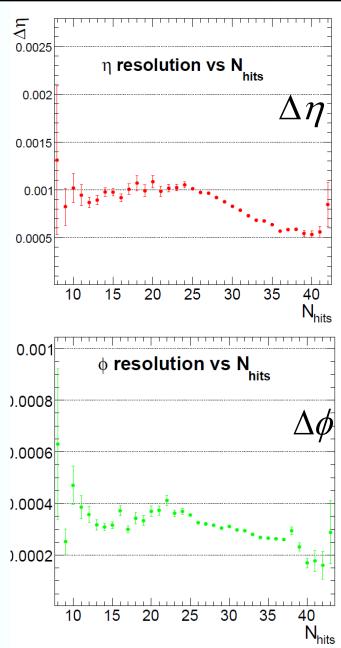
- •The normal cosmic muon reconstruction contains one-leg track and two standalone muons.
- •It can also be reconstructed as two splitted global muons:
 - •two tracks and two standalone muons
 - •up muon's outer position y>0
 - •down muon's outer position y<0</pre>
- •Cosmic muon selection:
 - 1. Good runs with B field on (3.8 T)
 - 2. Events with 2 tracks in opposite hemispheres
 - 3. Each track: |d0|<10 and |dz|<40
- •Total 85 K events after selection




•Plot $\Delta p_T/p_T$, $\Delta \eta$, and $\Delta \phi$ of the two splitted tracks in bins of the one-leg muon's p_T , η , ϕ and number of valid hits.


Muon resolution vs. p_T


- •the same to $\Delta \eta$ and $\Delta \phi$.
- •The p_T resolution is consistent with CMS PTDR (Physics Technical Design Report)!


Muon resolution vs. N_{hits}

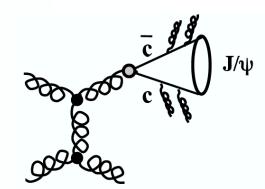
$$N_{hits}(\mu_{up}) + N_{hits}(\mu_{down}) \le N_{hits}(\mu_{one-leg})$$

The resolution as a function of η and ϕ is in the back-up slides

Summary

- We present a feasibility study of the J/ ψ cross section measurement with first data:
 - 1. Inclusive J/ψ cross section measurement
 - 2. B fraction fitting
 - 3. Misalignment effects are considers
 - 4. Systematic uncertainties are estimated.
- J/ ψ in CMS:
 - 1. Mass resolution: $\sigma_{J/\Psi}=30 \text{ MeV/c}^2 (|\eta|<2.4)$
 - 2. Signal/Background: ~ 7 for J/ ψ by requiring two muons p_T>3 GeV/c
 - 3. Expected rates in $|\eta|$ <2.4: two muons p_T>3GeV/c, ~25K J/ ψ per 1 pb⁻¹ (1.2 days @10³¹cm⁻²s⁻¹)
- Splitted cosmic muons can be used to inspect the detector performance.
 - The tracker seems to behave very well.

The LHC will start at September 2009!


Thank you! &Backup slides

Event Generation (1)

- COM J/ψ generation were originally implemented by S.
 Wolf (2002, never in official release)
 - Based on NRQCD- approach
 - Singlet and octet QQ produced perturbatively, followed by shower
 - Parton showers for radiation off octet QQ
- In Pythia:
 - Code integrated (Sjöstrand): PYTHIA ≥6.324
 - Possibility to dampen cross section at small PT like for gg > gg in underlying event (PYEVWT)
 - NRQCD matrix elements tuned (See Bargiotti, CERN-LHCb-2007-042)

NRQCD matrix elements

➤ Rates for all quarkonium processes given by NRQCD matrix elements

See also talk by M.Bargiotti at HERA-LHC workshop 2006

- ➤ Motivation of tuning: agreement MC⇔data
- ➤ NRQCD matrix elements from: hep-ph/0003142
 - CSM values extracted from potential models (hep-ph/9503356)
 - ➤ COM values from CDF data
- ightharpoonup Quark masses: $m_c = 1.5 \text{ GeV}$, $m_b = 4.88 \text{ GeV}$

PARP(141)	$\left\langle O^{J/\psi}[{}^3S_1^{(1)}] \right\rangle$	1.16
PARP(142)	$\left\langle O^{J/\psi}[{}^3S_1^{(8)}] \right angle$	0.0119
PARP(143)	$\left\langle O^{J/\psi}[^{1}S_{0}^{(8)}]\right angle$	0.01
PARP(144)	$\langle O^{J/\psi}[^3P_0^{(8)}]\rangle/m_c^2$	0.01
PARP(145)	$\langle O^{\chi_{c0}}[^3P_0^{(1)}]\rangle/m_c^2$	0.05
PARP(146)	$\langle O^{\Upsilon}[^{3}S_{1}^{(1)}]\rangle$	9.28
PARP(147)	$\langle O^{\Upsilon}[^{3}S_{1}^{(8)}]\rangle$	0.15
PARP(148)	$\left\langle O^{\Upsilon}[{}^{1}S_{0}^{(8)}]\right angle$	0.02
PARP(149)	$\langle O^{\Upsilon}[^{3}P_{0}^{(8)}]\rangle/m_{b}^{2}$	0.02
PARP(150)	$\left \left\langle O^{\chi_{b0}} \left[{}^{3}P_{0}^{(1)} \right] \right\rangle / m_{b}^{2} \right $	0.085

Event generation (2)

Prediction of the differential cross-section of prompt J/ ψ and B decayed J/ ψ at LHC,

14TeV

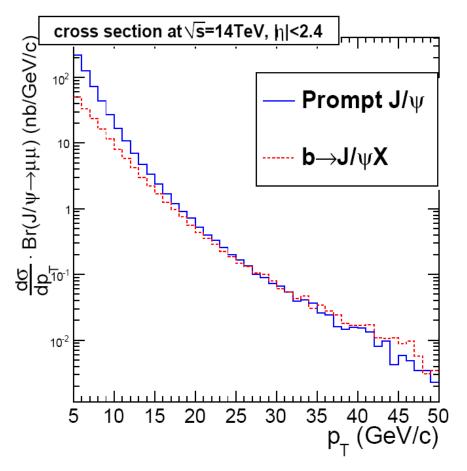
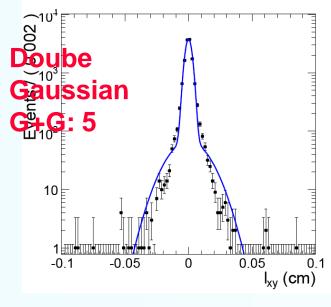
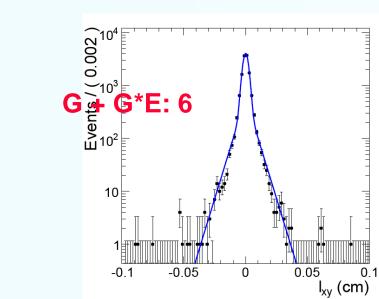
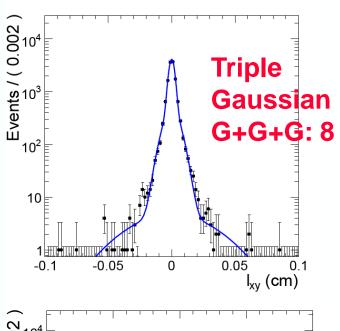
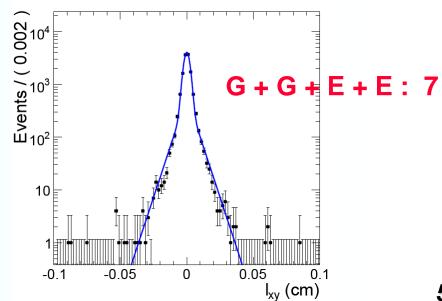


Figure 3: Prompt and non-prompt J/ψ differential cross sections in pp collision at 14TeV integrated over the range $|\eta| < 2.4$.

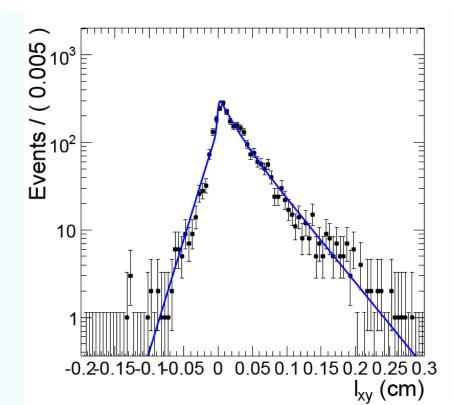

- Prompt J/ ψ : Use the tuned parameters and increase energy to 14TeV
- B decayed J/ψ: MSEL=1, QCD processes




Update (1)



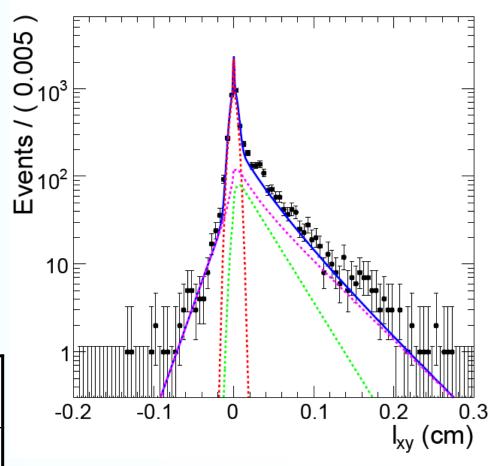
Resolution function: to parameterize the prompt J/psi pseudo-proper decay length.


Update (2)

Non-J/psi QCD background life time fitting

$$F_{Bkg}(\ell_{xy}) = \begin{cases} (1 - f_{+} - f_{-} - f_{sym}) \cdot R(\ell_{xy}, \sigma) &+ \frac{f_{+}}{\lambda_{+}} e^{-\frac{\ell'_{xy}}{\lambda_{+}}} \otimes R(\ell'_{xy} - \ell_{xy}, \sigma) \\ + \frac{f_{sym}}{2\lambda_{sym}} e^{-\frac{\ell'_{xy}}{\lambda_{sym}}} \otimes R(\ell'_{xy} - \ell_{xy}, \sigma) & \text{when } \ell_{xy} > 0, \\ (1 - f_{+} - f_{-} - f_{sym}) \cdot R(\ell_{xy}, \sigma) &+ \frac{f_{-}}{\lambda_{-}} e^{\frac{\ell'_{xy}}{\lambda_{-}}} \otimes R(\ell'_{xy} - \ell_{xy}, \sigma) \\ + \frac{f_{sym}}{2\lambda_{sym}} e^{\frac{\ell'_{xy}}{\lambda_{sym}}} \otimes R(\ell'_{xy} - \ell_{xy}, \sigma) & \text{when } \ell_{xy} < 0, \end{cases}$$

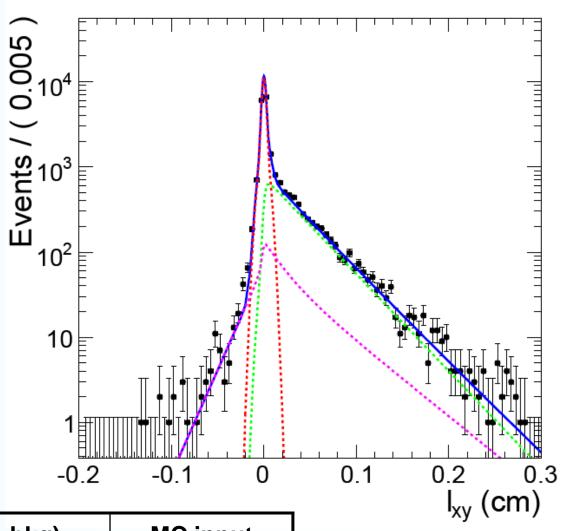
Background only


Updates (3)

- Because of the small background statistics, I didn't split them into pT bins but put them all into one bin:
 - Each pT bin will have different background level
 - Likelihood functions of the events in mass signal and mass side-band window are minimized simultaneously.

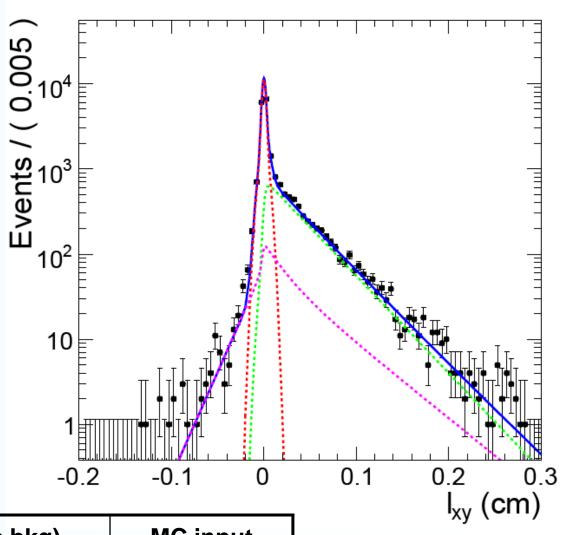
In pT bin 5-6 GeV/c, the background level S/B = 2.35

	fit (w bkg)	fit (w/o bkg)	MC input
f_b	0.212±0.019	0.178±0.012	0.180



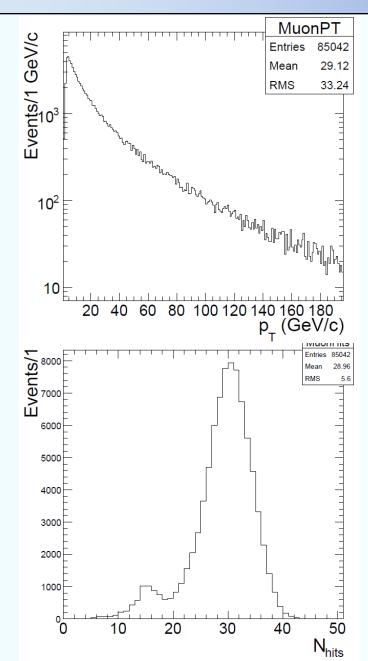
Update (4)

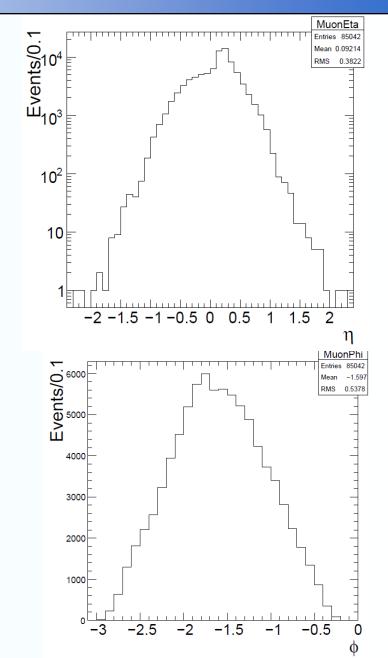
In pT bin 9-10 GeV/c, the background level S/B = 16.7


	fit (w bkg)	fit (w/o bkg)	MC input
f_b	0.296±0.0047	0.299 ± 0.0045	0.295

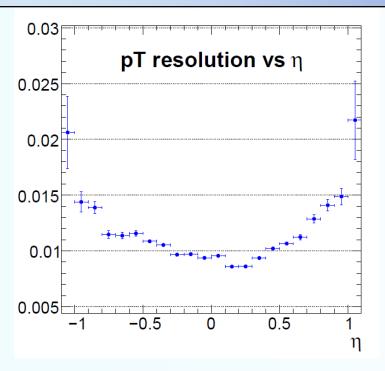
Update (5)

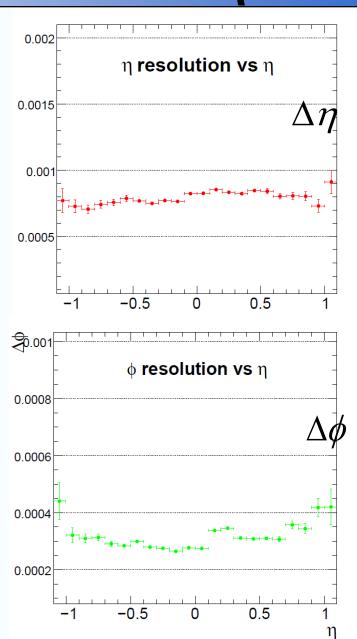
In pT bin 20-24 GeV/c, the background level S/B = 4.36



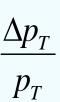

	fit (w bkg)	fit (w/o bkg)	MC input
f _b	0.454±0.011	0.458 ± 0.009	0.457

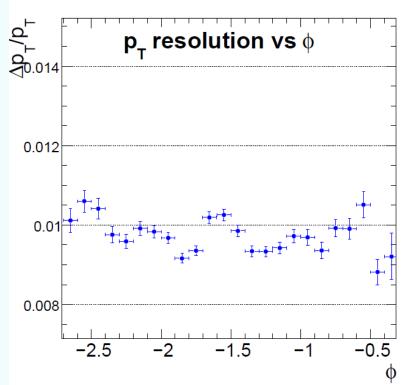
Cosmic Muons

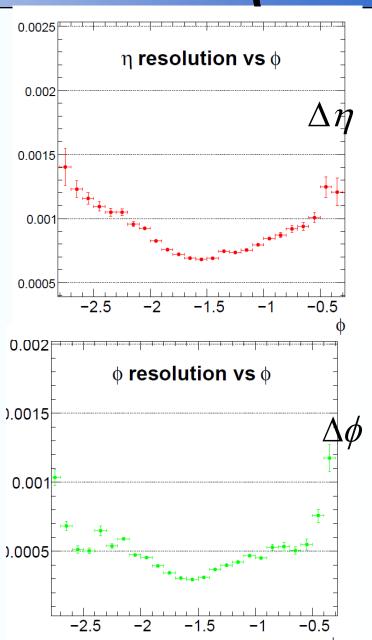




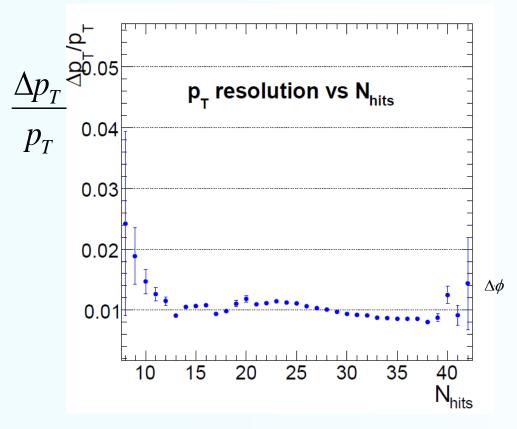
Muon resolution vs. η

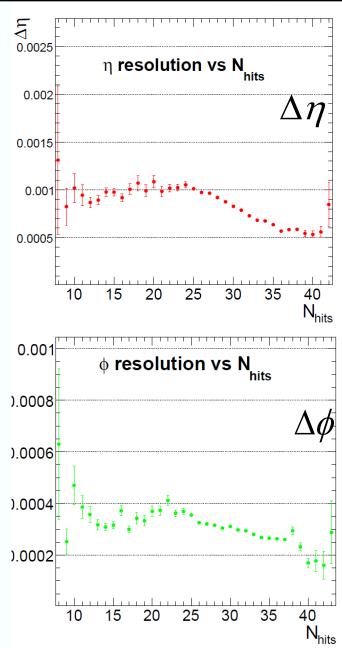






Muon resolution vs. η




Muon resolution vs. N_{hits}

$$N_{hits}(\mu_{up}) + N_{hits}(\mu_{down}) \le N_{hits}(\mu_{one-leg})$$

The resolution as a function of η and ϕ is in the back-up slides

