Photon Wave Mechanics and Spin-Orbit Interaction in Single Photons

OUTLINE

1: How the Photon is usually taught
2: Elementary Theory of the Wave Function of a Photon
3: "Advanced" Theory of the Wave Function of a Photon
4: Spin-Orbit Interaction in a Single Photon

How the photon is usually taught:

Maxwell-Boltzmann vs. Bose-Einstein

Light is made of EM waves.

Light is made of corpuscles.

Maxwell-Boltzmann

Light is made of EM waves.

Modes are distinguishable.
M-B counting statistics applies.

Bose-Einstein

Light is made of corpuscles. They are indistinguishable. $B-E$ counting statistics applies.

1. Photons are Bose particles with $E=h v$
2. Light is made of photons, but it also has wave properties, which are important when photons are flying through space, but not when they are detected.
Question: Must a photon be monochromatic?

An atom initially in an excited state decays spontaneously.

Question: If a photon can be in a fairly localized wave packet, what wave equation does this obey?

Teaching Wave Mechanics for Particles - 1 begin with Einstein's kinematic equation:

$$
E=\sqrt{\left(m c^{2}\right)^{2}+(c p)^{2}}
$$

$m=$ mass, $p=$ momentum
(ignore polarization, spin, interactions) $p=\mathrm{h} k$ (de Broglie) $\quad E=\mathrm{h} \omega$ (Planck)
Dispersion relations --> Wave Equations in 1D
electron: $m>0, v \ll c$
E; $\not \pi^{2}+\frac{p^{2}}{2 m}+\ldots$

$$
i \mathrm{~h} \frac{\partial}{\partial t} \Psi \cong-\frac{\mathrm{h}^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi
$$

Electron Wave

$$
\begin{gathered}
\text { photon: } \mathrm{m}=0, \mathrm{v}=\mathrm{c} \\
E^{2}=c^{2} p^{2} \\
{\hbar \ell^{2} \frac{\partial^{2}}{\partial t^{2}} \Psi(x, t)=\not म^{2} \mathrm{c}^{2} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)}_{\text {(h cancels out) }}^{\text {Photon Wave }} \\
\text { Equation }
\end{gathered}
$$

Teaching Wave Mechanics for Particles - 2 Particle in a Box $\quad p=\mathrm{h} k \quad E=\mathrm{h} \omega$

$$
\psi_{n}(x, t)=\sqrt{\frac{2}{b}} \sin \left(k_{n} x\right) \exp \left(-i \omega_{n} t\right) \quad k_{n}=n \pi / b, \quad n=1,2,3 \ldots
$$

$$
\begin{aligned}
& \text { Electron } \quad E=p^{2} / 2 m \\
& i \mathrm{~h} \frac{\partial}{\partial t} \Psi \cong-\frac{\mathrm{h}^{2}}{2 m} \stackrel{山}{2}^{2} \Psi \\
& x=0 \\
& \omega_{n}=\frac{E_{n}}{\mathrm{~h}}=\frac{\left(\mathrm{h} k_{n}\right)^{2}}{2 m \mathrm{~h}}=\left(\frac{n \pi}{b}\right)^{2} \frac{1}{2 m \mathrm{~h}} \\
& \text { (an electron "resonator") } \\
& \text { Photon } E=c p \\
& \frac{\partial^{2}}{\partial t^{2}} \Psi(x, t)=c^{2} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t) \\
& \omega_{n}=\frac{E_{n}}{\mathrm{~h}}=\frac{c\left(\mathrm{~h} k_{n}\right)}{\mathrm{h}}=n \frac{c \pi}{b} \\
& \text { (like a laser resonator) }
\end{aligned}
$$ position x at time t.

Electron

- Nonrelativistic: OK
- Relativistic:

Problematic charge density not \neq mass density

Photon
Always relativistic: Problematic, but OK for eigenstates of energy (or states with small spread in energy)

Spin: Just tack it on

Spin is described by two new quantum numbers, s and m

$$
\left|S^{\prime}\right|=\mathrm{h} \sqrt{s(s+1)} \quad S_{\$}=\mathrm{h} m
$$

Photon ($\mathrm{s}=1$)
$\left.\right|^{\prime} S \mid=\mathrm{h} \sqrt{(1 / 2)(1 / 2+1)}$

$$
|' S|=\mathrm{h} \sqrt{(1)(1+1)}
$$

$S_{\$}=\mathrm{h} m \quad$ (any axis)
$m=1 / 2,-1 / 2$ "spin projection"

$$
\sigma=1,-1(\operatorname{not} 0) \text { "helicity" }
$$

$$
\Psi_{e l}=\psi_{+\frac{1}{2}}(x, t) \chi_{+\frac{1}{2}}+\psi_{-\frac{1}{2}}(x, t) \chi_{-\frac{1}{2}}
$$

$$
S_{\$}=\mathrm{h} \sigma \quad \text { (propagation axis) }
$$

$$
\Psi_{p h}=\psi_{+1}(x, t) \chi_{+1}+\psi_{-1}(x, t) \chi_{-1}
$$

So, What is a Photon?

1. The name given to the $\mathbf{n}=\mathbf{1}$ states of the electromagnetic quantum field.
2. A fundamental quantum particle, through which the EM field emerges when many photons are present. (Like a nation emerging from an aggregate of many people.)

Analogous statements hold for electrons.

Many details have been swept under the rug...

Derivation of Photon Wave Equation

$$
E \psi_{T}(\stackrel{\otimes}{p, E)})=c \stackrel{\otimes}{p} \times \psi_{T}(\stackrel{\otimes}{p}, E)
$$

$$
i \frac{\partial}{\partial t} \boldsymbol{\psi}_{T}^{\mathbf{V}}(r, t)=c \stackrel{\mathbf{U}}{\boldsymbol{V}} \times{ }^{\mathbf{V}} \underset{\boldsymbol{\psi}_{T}}{\mathbf{V}}(r, t)
$$

Photon Wave Equation

momentum wave fn

$$
\begin{aligned}
& \psi(\underset{p}{\mathbf{w}}, E)=\left(\psi_{x}, \psi_{y}, \psi_{z}\right) \\
& \psi=\psi_{T}+\psi_{L} \\
& \stackrel{\mathbf{w}}{p} \times \psi_{L}=0, \quad \stackrel{p}{p} \cdot \psi_{T}=0
\end{aligned}
$$

Arbitrary weight fn. $f(E)$

$$
\stackrel{\mathbf{w}}{\psi}^{\psi_{T}}(\stackrel{\mathbf{v}}{r}, t) \equiv \iint d E d^{3} p \delta(E-c|\stackrel{\mathbf{v}}{p}|) \exp (-i E t / \mathrm{h}+i \stackrel{\stackrel{\rightharpoonup}{p}}{p} \cdot r / \mathrm{h}) f(E) \psi_{T}(\stackrel{\mathbf{v}}{p}, E)
$$

Require $\stackrel{\stackrel{\omega}{\Psi}}{\Psi}_{T} * \stackrel{\omega}{\Psi}_{T}=$ local energy density. -->

$$
f(E)=\sqrt{E}
$$

$$
\begin{aligned}
& E=c \sqrt{\text { 娄 }} p \cdot p \quad \text { photon, } m=0, \mathrm{~s}=1 \text {, } \\
& 3 \text { components } \\
& E \psi(\stackrel{\otimes}{p}, E)=c \sqrt{\stackrel{*}{p} \cdot \stackrel{*}{p}} \psi \stackrel{*}{*}(p, E) \\
& \otimes \mathrm{B} \sqrt{\stackrel{\otimes}{p} \cdot \stackrel{*}{p}} \stackrel{?}{=} i \stackrel{*}{p} \times
\end{aligned}
$$

$E=\sqrt{\left(m c^{2}\right)^{2}+(c p)^{2}}$ (Einstein)

$$
\stackrel{\underset{\psi}{\psi}(r, t)}{v}\left(\stackrel{u}{\psi}_{R}+i \stackrel{u}{\psi}_{I}\right.
$$

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \stackrel{u}{\psi}_{I}=-c \stackrel{\mathbf{u}}{\boldsymbol{\nabla}} \times \stackrel{u}{\psi}_{R} \\
\frac{\partial}{\partial t} \stackrel{\mathbf{u}}{\psi_{R}}=c \stackrel{\mathbf{u}}{\boldsymbol{\nabla}} \times \stackrel{\mathbf{u}}{\psi_{I}}
\end{array}\right.
$$

Photon Wv. Equation

3 components
Require $\stackrel{\sim}{\Psi} * * \stackrel{\sim}{\Psi}=$ local energy density

Compare to

Maxwell's Equations in Free

For a single-photon field, the quantum wave function of the photon obeys the same wave equation as the complex electromagnetic field $E+\sigma i B$
helicity (spin, polarization): $\sigma= \pm 1$

$$
\begin{aligned}
& i \frac{\partial}{\partial t} \stackrel{\mathbf{n}}{\Psi}=\sigma c \stackrel{\mathbf{u}}{\nabla} \times \stackrel{\mathbf{u}}{\Psi} \\
& i \mathrm{~h} \frac{\partial}{\partial t} \stackrel{\mathbf{u}}{\Psi}=\sigma \operatorname{Lu}_{c} \stackrel{\mathbf{n}}{\nabla} \times \stackrel{\mathbf{u}}{\Psi} \equiv \mu \stackrel{\mathbf{u}}{\Psi} \Psi
\end{aligned}
$$

Maxwell, in 1862, discovered a fully relativistic, quantum mechanical theory of a single photon.

MODES

STATES

We can elevate the photon wave function to a quantum field, then the usual quantum field theory reappears. See the review:
"Photon wave functions, wave-packet quantization of light, and coherence theory,"

Brian J. Smith and M. R., New J. Phys. 9, 414 (2007)

There are subtleties:

- $\Psi_{T}^{*} \Psi_{T}=$ energy density, not particle number density.
- Cannot localize a photon wave function to a point.
- The scalar (inner) product has an unusual form.
- There is NOT a Fourier-transform relation between momentum and position wave functions.

States (Modes) of Single Photons

A photon has four degrees of freedom: momentum in x, y, and z; and spin (polarization).

Transverse Beam Shape

Laguerre-Gauss and Hermite-Gauss Spatial Modes

To what extent is there a photon-electron analogy?

1. Spin Hall Effect for Electrons: opposite spin accumulation on opposing latteral surfaces of a current-carrying sample. Its origin is spin-orbit interaction.

Dyakonov and Perel (1971) Sov. Phys. JETP Lett. 13, 467
Hirsch (1999) PRL 83, 1834
2. Spin Hall Effect for Light: spin-dependent displacement perpendicular to the refractive index gradient for photons passing through an air-glass interface.
M. Onoda, S. Murakami, N. Nagaosa, PRL 93, 083901 (2004)

Observed: Hosten, Kwiat Science 319 (2008)

Spin-Orbit Interaction (SOI) in Spherical Potentials

- ELECTRON IN AN INHOMOGENOUS SPHERICAL ELECTRIC POTENTIAL (ATOM)

$$
\begin{gathered}
H^{\prime}=-\frac{e^{2}}{2 m^{2} c^{2}} \frac{1}{r^{3}} \mathbf{S} \mathbf{g} \\
\mathbf{S}=S A M \quad{ }^{\prime} \times \stackrel{\text { u }}{p}=\mathbf{L}=O A M
\end{gathered}
$$

(atomic fine structure)

- PHOTON IN A DIELECTRIC SPHERE

Polarization-dependent mode-frequency shifts?

Spin-Orbit Interaction (SOI) in Cylindrical Potentials

-ELECTRON IN AN CYLINDRCIAL WAVEGUIDE

Solve Dirac Equation for the traveling-wave states.

- PHOTON IN A CYLINDRICAL OPTICAL FIBER

Solve Maxwell's Equations for the modes and send a single photon through.

ELECTRON in a CYLINDER STEP POTENTIAL

(C Leary, D Reeb, M Raymer, to appear NJP)

Dirac Equation --> Schrodinger Equation with SOI

Recall Coulomb potential:

$$
\stackrel{\mathbf{u}}{\nabla} V=-e \frac{r^{\prime}}{r^{3}}
$$

$$
\mathbf{S g}(\stackrel{\mathfrak{r}}{\nabla} V \times \stackrel{\mathfrak{u}}{p})=-\frac{e^{2}}{r^{3}} \mathbf{S g} \mathbf{L}
$$

$$
\mathbf{S}=S A M \quad{ }^{\prime} \times \stackrel{\sim}{p}=\mathbf{L}=O A M
$$

$$
\begin{aligned}
& \text { Cylindr. potential: } \\
& \stackrel{\text { ü }}{\nabla} V=\frac{\stackrel{u}{\rho}}{\rho} \frac{\partial V}{\partial \rho} \\
& \mathbf{S g}(\stackrel{\mathbf{U}}{\nabla} V \times \stackrel{\text { w }}{p})=\frac{1}{\rho} \frac{\partial V}{\partial \rho} \mathbf{S} \mathbf{g}(\stackrel{\text { n }}{\rho} \times \stackrel{\text { w }}{p})
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\rho} \frac{\partial V}{\partial \rho} S_{z} L_{z}+\left[p_{z} \text { term }\right]
\end{aligned}
$$

parallel or anti-parallel

ELECTRON in a CYLINDER STEP POTENTIAL

$$
i \mathrm{~h} \frac{\partial}{\partial t} \Psi=-\frac{\mathrm{h}^{2}}{2 m} \stackrel{\mathrm{r}}{2}_{2} \Psi+H^{\prime} ; \quad H^{\prime}=\frac{e}{2 m^{2} c^{2}} \frac{1}{\rho} \frac{\partial V}{\partial \rho} S_{z} L_{z}
$$

For fixed propagation constant (z-momentum), perturbative Energy shift is: $\delta E=\langle\Psi| H^{\prime}|\Psi\rangle$

$$
\frac{\partial V}{\partial \rho}=V_{0} \delta(\rho-a)
$$

where unperturbed states are

$$
\begin{aligned}
& \Psi_{\sigma=+1}=\binom{1}{0} J_{m_{1}}(\kappa r) e^{i m_{1} \phi} e^{i(\beta z-\omega t)} \\
& \Psi_{\sigma=-1}=\binom{0}{1} J_{m_{1}}(\kappa r) e^{i m_{1} \phi} e^{i(\beta z-\omega t)}
\end{aligned}
$$

Then

$$
\delta E=\int \Psi_{\sigma}^{\dagger} H^{\prime} \Psi_{\sigma} \propto\left(\underline{\left.m_{1} \sigma\right)}\left(J_{m_{1}}(\kappa a)\right)^{2}\right.
$$

ELECTRON in a CYLINDER STEP POTENTIAL

$$
i \mathrm{~h} \frac{\partial}{\partial t} \Psi=-\frac{\mathrm{h}^{2}}{2 m} \stackrel{\mathrm{U}}{2}^{\nabla^{2}} \Psi+H^{\prime} ; \quad H^{\prime}=\frac{e}{2 m^{2} c^{2}} \frac{1}{\rho} \frac{\partial V}{\partial \rho} S_{z} L_{z}
$$

For fixed propagation constant (z-momentum), perturbative Energy shift is: $\delta E=\langle\Psi| H^{\prime}|\Psi\rangle$
where unperturbed states are

$$
\begin{aligned}
& \Psi_{\sigma=+1}=\binom{1}{0} J_{m_{1}}(\kappa r) e^{i m_{1} \phi} e^{i(\beta z-\omega t)} \\
& \Psi_{\sigma=-1}=\binom{0}{1} J_{m_{1}}(\kappa r) e^{i m_{1} \phi} e^{i(\beta z-\omega t)}
\end{aligned}
$$

Then

$$
\delta E=\int \Psi_{\sigma}^{\dagger} H^{\prime} \Psi_{\sigma} \propto\left(\underline{\left.m_{1} \sigma\right)}\left(J_{m_{1}}(\kappa a)\right)^{2}\right.
$$

- For a given energy, a parallel-AM electron state has a smaller z-propagation constant than that of an anti-parallel state.
- For a given z-propagation constant, a parallel-AM electron state has a larger energy than that of an anti-parallel state.
- Non-perturbative solution of Dirac equation gives same result.

ELECTRON STATE ROTATION in a CYLINDER WAVEGUIDE

Superposition of degenerate positive-helicity states with opposite OAM:

$$
e^{i m_{1} \phi+\beta_{1} z}+e^{-i m_{1} \phi+\beta_{2} z} \mathrm{a} \cos \left[m_{1}\left(\phi+\sigma \frac{\beta_{1}-\beta_{2}}{2} z\right)\right]
$$

$$
m_{1}= \pm 2
$$

Superposition of two degenerate positive-helicity states with opposite OAM: $\quad m_{1}=+2,-2$

- Kapany and Burke first predicted polarization-dependent spatial mode rotation of optical modes in fiber. (1972)
- Did not explain in terms of SOI.

- Zel'dovich, Liberman (1990; PRA 46, 5199, 1992) first predicted optical SOI:
- Treated a many-mode fiber with a parabolic index profile.
- Predicted spatial mode rotation, due to SOI.
- Observed rotation of speckle pattern, but not of single modes.

$$
\left.\mathbb{E E}(\vec{r}, 4, z)\right|^{2} \quad \mid \mathbb{E}^{\dagger}\left(r, \varphi, z,\left.z\right|^{2}\right.
$$

step-index 200 um
Dooghin et al PRA 1992

- Complementary to Rytov-Berry rotation of polarization by topological phase.
- See also works by A.V. Volyar.

Maxwell's Equations in an Inhomogeneous Medium, interpreted as the Quantum Wave Equation for a single photon

$$
\begin{aligned}
\frac{\partial D}{\partial t} & =\nabla \times H, \quad \frac{\partial B}{\partial t}=-\nabla \times E \\
D & =\varepsilon E, \quad H=B / \mu, \quad \nabla \cdot D=0, \quad \nabla \cdot B=0
\end{aligned}
$$

--> Photon Wave Equation:

$$
\begin{gathered}
i \mathrm{~h} \frac{\partial}{\partial t} \stackrel{\mathbf{u}}{\Psi}=\mathrm{h} c \stackrel{\mathbf{u}}{\nabla} \times \stackrel{\mathbf{u}}{\Psi}+\mathrm{h} c \stackrel{\mathbf{u}}{\nabla} N \times \stackrel{\mathbf{u}}{\Psi} N \\
(\stackrel{\mathbf{u}}{\nabla}+\stackrel{\mathbf{u}}{\nabla} N) \cdot \stackrel{\mathbf{u}}{\Psi}=0
\end{gathered}
$$

Perturbation Theory for Optical SOI in Step-Index Fiber (C Leary)

- Maxwell Wave Equation:

$$
\begin{aligned}
& \nabla^{2} E+\omega^{2} \varepsilon(\rho) E+\nabla[\nabla \ln \varepsilon(\rho) g E]=0 \\
& E=\left(E_{T}+E_{L}\right) e^{i(\beta z-\omega t)}, \quad E_{L} \ll E_{T} \\
& \Rightarrow H_{0} E_{T}+H^{\prime} E_{T}=\beta^{2} E_{T} \\
& H_{0}=\left(\nabla_{T}^{2}+\omega^{2} \varepsilon(\rho)\right) \\
& H^{\prime} E_{T}=\nabla_{T}\left[\nabla_{T} \ln \varepsilon(\rho) g E_{T}\right]
\end{aligned}
$$

- Unperturbed eigenmodes have well defined components of spin σ and orbital angular momentum m_{ℓ} along z

$$
\begin{aligned}
& \text { axis. } \\
& E(\rho, \phi, z)=\mathbf{e}_{\sigma} J_{m_{1}}(\kappa \rho) e^{i m_{1} \phi} e^{i(\beta z-\omega t)} \\
& \text { circular polarization vector } \\
& \text { where } \mathbf{e}_{\sigma}=\binom{1}{0} \text { or }\binom{0}{1}
\end{aligned}
$$

Perturbation Theory for Optical SOI in Step-Index Fiber (C Leary)

$$
\begin{aligned}
& \text { Perturbed Modes in Circular-Pol Basis States: } E_{\sigma, m_{1}} \\
& E_{+1, m_{1}}=\binom{1}{0} J_{m_{1}}(\kappa \rho) e^{i m_{1} \phi} e^{i\left(\left[\beta+\delta \beta_{+1}\right] z-\omega t\right)} \\
& E_{-1, m_{1}}=\binom{0}{1} J_{m_{1}}(\kappa \rho) e^{i m_{m_{1}} \phi} e^{\left.i\left(\beta \beta+\delta \beta_{-1}\right] z-\omega t\right)} \\
& \delta \beta_{\sigma} \propto\left\langle E_{\sigma, m_{1}}\right| H H^{\prime}\left|E_{\sigma, m_{1}}\right\rangle \\
& \propto\left\langle E_{\sigma, m_{1}}\right| \forall_{3} E_{z} \frac{1}{\rho} \frac{\partial \varepsilon}{\partial \rho}\left|E_{\sigma, m_{1}}\right\rangle \\
& \propto\left(\sigma m_{1}\right)\left(J_{m_{1}}(\kappa a)\right)^{2} \\
& \text { electron! } \\
& H_{\text {electron }}^{\prime} \propto \$_{z} \mathbb{E}_{z} \frac{1}{\rho} \frac{\partial V}{\partial \rho}
\end{aligned}
$$

Nonperturbative Solutions for Optical SOI in Step-Index Fiber

propagation constant β is different when SAM and OAM are parallel or antiparallel (for fixed ω)

Photon spin angular momentum (SAM) and orbital angular momentum (OAM) can carry quantum information.

If photon SAM and OAM interact, then quantum gate interactions can perhaps be based on such interactions.

Single-Photon Spin-Controlled Hadamard Gate $\left|m_{1}\right|=1$

$$
e^{i m_{1} \phi+\beta_{+1} z}+e^{-i m_{1} \phi+\beta_{-1} z} \propto \cos [\underbrace{\left.m_{1}\left(\phi+\sigma \frac{\beta_{+1}-\beta_{-1}}{2} z\right)\right]}
$$

$\sigma \cdot m_{1}=-1 \quad \sigma \cdot m_{1}=+1$

Flipping the photon spin (circular polarization) flips the direction of rotation of the superposition spatial mode.

Single-Photon Spin-controlled Hadamard gate $\left|m_{1}\right|=2$

$$
e^{i m_{1} \phi+\beta_{+1} 2^{2}}+e^{-i m_{1} \phi+\beta_{-1}} \propto \cos \left[m_{1}\left(\phi+\sigma \frac{\beta_{+1}-\beta_{-1}}{2} z\right)\right]
$$

$\sigma \cdot m_{1}=-2$
$\sigma \cdot m_{1}=+2$

$|0\rangle+|1\rangle$
Flipping the photon spin (circular polarization) flips the direction of rotation of the superposition spatial mode.

SAM-OAM Entangling by Hadamard gate $\left|m_{1}\right|=2$

Summary: Spin-Orbit Interaction in Cylindrical Waveguides

- Phase-velocity splitting proportional to σm_{1}.
- Parallel or anti-parallel SAM and OAM give rise to different propagation constants, for fixed frequency.
- Depends on total AM, $\left|m_{j}\right|=\left|m_{l}+\sigma\right|$.
- SOI-split states (modes) have a longitudinally varying relative phase difference, which creates rotation of superposition states (modes).
- Can be used to implement a single-photon spin-controlled spatial rotation, for entangling spin and spatial modes.
- Electron-photon analogy strengthens the photon-asparticle viewpoint.

Poincare Sphere for Polarization

Poincare Sphere for $\mathrm{L}=1$ Modes

What are the proper Scalar Product and

 Normalization? Bialynicki-Birula (1996)+refs.- should be bilinear • should be Lorentz invariant

Invariant, Non-local

No local particle density (deal with it)

The mean Energy of the photon is:
Ψ
$\Psi(r)$ is the probability amplitude for
localizing Energy, not particle position.

Quantum Field Theory: Dirac used Monochromatic Modes $\left(\underset{p}{\mu}=\mathrm{h}^{\prime} k\right)$

The T-G wave-packet modes are orthogonal under the same

scalar product as are the photon wave functions

Photon Wave Functions:

Non-Monochromatic wave packet modes:

$$
\mathrm{v}_{j}^{\mathrm{I}}(r, t)=\sum_{\lambda} \int d^{3} k R_{j}(k, \lambda) \underline{\sqrt{k}^{\prime}} \stackrel{\mathrm{I}}{k, \lambda}_{\mathrm{r}}{ }^{\mathrm{I}}(r, t)
$$

If we quantize the one-photon wave function, we obtain standard Dirac Quantum Field Theory

Dirac form

