Spin Asymmetries on the Nucleon Experiment

James Maxwell, Univ. of Virginia

SANE: TJNAF Hall C, E07-003

SANE Collaboration:
U. Basel, Christopher Newport U., Florida International U., Hampton U., Mississippi State U., Norfolk S. U., North Carolina A\&M, IHEP-Protvino, Ohio U., U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., Temple U., TJNAF, U. of Virginia, William \& Mary, U. of the Witwatersrand, Yerevan Physics I.

Spokespersons: S. Choi (Seoul), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

Thanks to: D.Day, O.Rondon, D.Crabb, J.Mulholland, K.Slifer, H.Baghdasaryan, V. Mamyan
$4^{\text {th }}$ Year Seminar, UVa April 17 ${ }^{\text {th }}, 2008$

Nucleon Spin

- So, protons and neutrons are made of quarks, tied together by massless gluons. Huzzah!
- How do we account for the spin $1 / 2$ of the nucleon?
- Inclusive measurements: Only about 25% of nucleon spin carried by quarks
- How do we represent the spin distribution in a proton or a neutron?

Scattering in Nuclear Physics

- Probing a nucleon deeply, need high energy photons
- Short wave-length "photon beam" provided virtually by high momentum lepton can resolve quarks

- Variables:

Square of 4-momentum transferred to target.

$$
Q^{2}=-q^{\mu} q_{\mu}
$$

Bjorken x: In Breit frame, the fraction of the nucleon's momentum carried by the struck quark.

$$
x=\frac{Q^{2}}{2 M \nu}
$$

Scaling and Structure Functions

- As we probe within the nucleus (Deep Inelastic Scaterring), scattering at each energy scale depends only on this dimensionless variable x: Bjorken Scaling

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\left(\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right)_{\text {point }} f\left(E, E^{\prime}, \Theta\right) F_{2}(x)
$$

- Quark distributions inside the nucleon are described by four such structure functions:
- Structure functions: F_{1}, F_{2} - cross section
- Spin Structure Functions: $\mathrm{g}_{1}, \mathrm{~g}_{2}$ - polarization observables
- In Quark-Parton Model, we can write F_{1} and g_{1} in terms of helicity dependent quark distribution functions, $\mathrm{q}_{\mathrm{i}}{ }^{\text {l }}(\mathrm{x})$:

$$
\begin{gathered}
\boldsymbol{F}_{\mathbf{1}}(\boldsymbol{x})=\frac{1}{2} \sum_{i} e_{i}^{2}\left(q_{i}^{\uparrow}(x)+\boldsymbol{q}_{i}^{1}(x)\right) \quad \boldsymbol{g}_{\mathbf{1}}(\boldsymbol{x})=\frac{1}{2} \sum_{i} e_{i}^{2}\left(q_{i}^{\uparrow}(x)-q_{i}^{1}(x)\right) \\
i=\text { index of quark flavor }
\end{gathered}
$$

Transverse Spin Structure Function

- The Transverse SSF, g_{2}, dominates the cross section when the target spin is perpendicular to the lepton helicity
- g_{2} is combination of twist-2 ($\mathrm{q}-\mathrm{q}$) and twist-3 ($\mathrm{q}-\mathrm{g}$) components

$$
\begin{gathered}
g_{2}\left(x, Q^{2}\right)=g_{2}^{w w}\left(x, Q^{2}\right)+\overline{g_{2}}\left(x, Q^{2}\right) \\
\left.=-g_{1}+\int_{x}^{1} g_{1}\left(x^{\prime}\right) \frac{d x^{\prime}}{x^{\prime}}-\int_{x}^{1} \frac{\partial}{\partial x^{\prime}} \frac{m}{M} \boldsymbol{h}_{T}\left(\boldsymbol{x}^{\prime}, \boldsymbol{Q}^{2}\right)+\xi\left(x^{\prime}, \boldsymbol{Q}^{2}\right)\right] \frac{d x^{\prime}}{x^{\prime}}
\end{gathered}
$$

- $g_{2}^{\text {ww }}$ (Wandzura-Wilczek) part depends on g_{1}
- h_{T} is transversity SSF
- ξ represents twist-3 quark-gluon correlations.

Twist-3 d_{2}

- QCD's Operator-Product Expansion (OPE):
- relates $\boldsymbol{g}_{\mathbf{1}}, \boldsymbol{g}_{\mathbf{2}}$ moments with calculable twist-2 $\left(\mathbf{a}_{\mathbf{N}}\right)$, twist-3 $\left(\boldsymbol{d}_{\mathbf{N}}\right)$ matrix elements

$$
\begin{aligned}
& \int_{0}^{1} x^{N} g_{1}\left(x, Q^{2}\right) d x=\frac{1}{2} a_{N}+O\left(M^{2} / Q^{2}\right), \quad N=0,2,4, \ldots \\
& \int_{0}^{1} x^{N} g_{2}\left(x, Q^{2}\right) d x=\frac{N}{2(N+1)}\left(d_{N}-a_{N}\right)+O\left(M^{2} / Q^{2}\right), \quad N=2,4, \ldots
\end{aligned}
$$

- $\mathbf{d}_{\mathbf{N}}$ measures twist-3 contributions

$$
d_{2}=\int_{0}^{1} x^{2}\left(2 g_{1}+3 g_{2}\right) d x=3 \int_{0}^{1} x^{2} \overline{g_{2}}\left(x, Q^{2}\right) d x
$$

SANE Overview

- Proton spin structure function $\mathrm{g}_{2}\left(x, \mathrm{Q}^{2}\right)$, spin asymmetry $\mathrm{A}_{1}\left(x, \mathrm{Q}^{2}\right)$ at $2.5 \leq \mathrm{Q}^{2} \leq 6.5 \mathrm{GeV}^{2}$ and Bjorken x of $0.3 \leq x \leq 0.8$
- Learn all we can about proton SSF's from an inclusive double polarization measurement
- Twist-3 effects from SSF moments
- Comparisons with Lattice QCD, QCD sum rules, bag models, chiral quarks
- Exploration of "high" x region: A_{1} 's approach to $\mathrm{x}=1$
- Test polarized local duality for final state mass $\mathrm{W}>1.4 \mathrm{GeV}$
- Will take place in 2008, in Hall C of Jefferson Lab, using highest available beam energy (6 GeV)

Expected Results: Spin Asymmetry

$$
A_{1}=\frac{\sigma_{1 / 2}^{T}-\sigma_{3 / 2}^{T}}{\sigma_{1 / 2}^{T}+\sigma_{3 / 2}^{T}}=\frac{1}{F_{1}}\left(g_{1}-\gamma^{2} g_{2}\right)
$$

- Measuring the beam-target asymmetry for two values of the polarization angle w.r.t. the beam:
$A_{\|}=\frac{\sigma^{(\uparrow \downarrow)}-\sigma^{(\downarrow \downarrow)}}{\sigma^{(\uparrow \downarrow)}+\sigma^{(\downarrow \downarrow)}}, A_{\perp}=\frac{\sigma^{(\uparrow \rightarrow)}-\sigma^{(\downarrow \leftarrow)}}{\sigma^{(\uparrow \rightarrow)}+\sigma^{(\downarrow \leftarrow)}}$
we can then extract

$$
\begin{gathered}
A_{1}=\frac{1}{\left(E+E^{\prime}\right) D}\left(\left(E-E^{\prime} \cos \theta\right) A_{\|}-\frac{E^{\prime} \sin \theta}{\cos \phi} A_{\perp}\right) \\
A_{2}=\frac{\sqrt{Q^{2}}}{2 E D^{\prime}}\left(A_{\|}+\frac{E-E^{\prime} \cos \theta}{E^{\prime} \sin \theta \cos \phi} A_{\perp}\right)
\end{gathered}
$$

Expected Results (cont.)

SANE expected errors for $\overline{\boldsymbol{d}}_{2}=\int_{\text {xmin }}$ xmax $^{2}\left(2 g_{1}+3 g_{2}\right) d x$

- $\delta \bar{d}_{2} / \mathbf{d}_{2}\left(Q^{2}=3 \mathrm{GeV}^{2}\right)=4 \%$ for $0.29<x<0.85$
- $\delta \bar{d}_{2} / \mathbf{d}_{2}\left(Q^{2}=3.5\right.$ to $\left.6.5 \mathrm{GeV}^{2}\right)=2.5 \%$ for $0.41<x<0.96$

Kinematics and World Data

Experimental Setup

Target

- UVa Polarized NH_{3}
- $\mathrm{B}=80^{\circ}, 180^{\circ}$

Electron Arm

- BETA

Background, Calibration

- HMS

Chicane
Beamline

- Polarization >75\%
- Chicane (for $\mathrm{B}=80^{\circ}$)
- He Bag

Big Electron Telescope Array

- Big Cal Calorimeter (GEp-III): Energy, Position
- Lucite Hodoscope: Position, Background Reduction
- Gas Cerenkov: Electron Detection, Pion rejection
- Front Hodoscope: Low Q² Electron/Positron Differentiation Characteristics:
- Effective solid angle of 0.194 sr
- Energy resolution of 5\%/VE(GeV)
- Angular resolution ~ 1mr
- Vertex Resolution ~ 5mm
- 1000:1 pion rejection

BigCal

- Final Destination: Shower
- Energy, Position Resolution
- Built for GEp-III
- Big: 1744 Pb-glass bars
- 1024 3.8x3.8cm² (Protvino)
- $7204 \times 4 \mathrm{~cm}^{2}$ (Yerevan)
- Expertise from GEp

BigCal Calibration

- Before run: ep elastic coincidences with HMS
- HMS will give momentum of proton, determining electron

Top View

- Neutral Pion mass measurement
- Catching both photons in BigCal will allow mass reconstruction
- Will allow monitor of calibration throughout experiment

Side View

Lucite Hodoscope

- 28 Scintillating acrylic glass bars, 240 cm from target
- Position; insensitive background from outside target chamber
- Curved to 240 cm to allow normal incidence from target
- A. Ahmidouch, S. Danagoulian, collaborators from NC A\&T State U.

Gas Čerenkov Detector

- Efficient electron detection, Pion rejection 1000:1
- Dry nitrogen radiator $n=1.000279$
- 4 spherical and 4 toroidal mirrors with 8 3" photomultiplier tubes
- Z.-E. Meziani and Temple Collaborators

Front Tracker

- Bicron Plastic Scintillator detector in front of Cerenkov, just 50 cm from target
- 3 Y-planes (133 bars), $1 \times$ plane (73)
- Electron or positron?
- 5T target magnet bend path
- Position measurement close to target field
- M. Khandaker (Norfolk S.U.), C.Butuceanu (U. Regina)

Simulation

- Geant3 (BETA) and Geant4 (Cerenkov, Temple U)
- Anticipate detector response
- Event generation in increasingly realistic detector geometry
- Reconstruction to process created ntuple
- Being reworked to interface directly to analyzer ntuple
- G. Warren, J. Maxwell, H.Baghdasaryan, O. Rondon

UVa Polarized Target

- Dynamic Nuclear Polarization
- Hyperfine transitions induced by microwave pumping
- Typical characteristics:
- B field of 5 T
- Frozen Solids: NH_{3}
- NMR measures polarization
- $I_{\text {beam }} \approx 80 \mathrm{nA}$
- Average in-beam proton polarization ~70\%
- "Open" Geometry

SANE Test Run

- Time allotted before the resumption of GEp
- Hodoscope mounted to BigCal frame, Cerenkov and Tracker mounted to stand, wired
- March $30^{\text {th }}$ to April $3^{\text {rd }}$
- BETA fully formed for the first time, took data with beam, analyzer tested
- Large amounts of data from all detectors, promising first steps

Status Summary

- PAC31 re-approved SANE as E07-003 with "A" rating
- 27 days plus 14 calendar days of commisioning (70 days on the floor)
- Scheduled to install June, run October until the end of the year
- Jonathan and I moving to Newport News in May to commence full-time target work in test lab

Questions?

Experimental Design

Helium Bag
BETA $\left(40^{\circ}\right)$
BigCal
Hodoscope
Gas Cherenkov
Forward
Hodoscope

Beam Line

Asymmetry A_{1}

- Spin Asymmetry A_{1} is related to the SSF's by way of the unpolarized structure function F_{1} :

$$
A_{1}\left(Q^{2}, v\right)=\frac{\sigma_{1 / 2}^{T}-\sigma_{3 / 2}^{T}}{\sigma_{1 / 2}^{T}+\sigma_{3 / 2}^{T}}=\frac{1}{F_{1}}\left(g_{1}-\gamma^{2} g_{2}\right) \quad \gamma^{2}=\frac{4 M^{2} x^{2}}{Q^{2}}
$$

- UVa Polarized Target at JLab allows measurement of \mathbf{A}_{\perp}, as well as $\mathbf{A}_{\| \prime}$ from which we extract $\mathbf{A}_{1}, \mathbf{A}_{2}$:

$$
A_{1}=\frac{C}{D}\left(A_{\|}-d A_{\perp}\right) \quad A_{2}=\frac{C}{D}\left(c^{\prime} A_{\|}+d^{\prime} A_{\perp}\right)
$$

- Where C is the longitudinal polarization of the virtual photon, and D is the virtual photon depolarization

Structure Functions

- Quark distributions inside the nucleon are described by four structure functions:
- Structure functions: F_{1}, F_{2} - cross section
- Spin Structure Functions: $\mathrm{g}_{1}, \mathrm{~g}_{2}$ - polarization observables
- In Quark-Parton Model, we can write F_{1} and g_{1} in terms of helicity dependent quark distribution functions, $q_{i}^{\text {l }}(x)$:

$$
\begin{gathered}
\boldsymbol{F}_{\mathbf{1}}(\boldsymbol{x})=\frac{1}{2} \sum_{i} e_{i}^{2}\left(\boldsymbol{q}_{i}^{\uparrow}(x)+\boldsymbol{q}_{i}^{1}(x)\right) \\
\boldsymbol{g}_{\mathbf{1}}(\boldsymbol{x})=\frac{1}{2} \sum_{i} e_{i}^{2}\left(\boldsymbol{q}_{i}^{\uparrow}(x)-q_{i}^{1}(x)\right) \\
i=\text { index of quark flavor }
\end{gathered}
$$

