Spin Asymmetries on the Nucleon Experiment

James Maxwell, Univ. of Virginia

SANE: TJNAF Hall C, E07-003

SANE Collaboration:

 U. Basel, Christopher Newport U., Florida International U., Hampton U., Mississippi State U., Norfolk S. U., North Carolina A&M, IHEP-Protvino, Ohio U., U. of Regina, Rensselaer
 Polytechnic I., Rutgers U., Seoul National U., Temple U., TJNAF, U. of Virginia, William & Mary, U. of the Witwatersrand, Yerevan Physics I.

Spokespersons: S. Choi (Seoul), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

Thanks to: D.Day, O.Rondon, D.Crabb, J.Mulholland, K.Slifer, H.Baghdasaryan, V. Mamyan

4th Year Seminar, UVa April 17th, 2008

Nucleon Spin

- So, protons and neutrons are made of quarks, tied together by massless gluons. Huzzah!
- How do we account for the spin ¹/₂ of the nucleon?
- Inclusive measurements: Only about 25% of nucleon spin carried by quarks
- How do we represent the spin distribution in a proton or a neutron?

Scattering in Nuclear Physics

- Probing a nucleon deeply, need high energy photons
- Short wave-length "photon beam" provided virtually by high momentum lepton can resolve quarks

• Variables:

Square of 4-momentum transferred to target.

 $Q^2 = -q^{\mu}q_{\mu}$

Bjorken x: In Breit frame, the fraction of the nucleon's momentum carried by the struck quark.

Scaling and Structure Functions

 As we probe within the nucleus (Deep Inelastic Scaterring), scattering at each energy scale depends only on this dimensionless variable x: Bjorken Scaling

$$\frac{d^2\sigma}{d\Omega dE'} = \left(\frac{d^2\sigma}{d\Omega dE'}\right)_{point} f(E, E', \Theta) F_2(\chi)$$

- Quark distributions inside the nucleon are described by four such structure functions:
 - Structure functions: F₁, F₂ cross section
 - Spin Structure Functions: g₁, g₂ polarization observables
- In Quark-Parton Model, we can write F_1 and g_1 in terms of helicity dependent quark distribution functions, $q_i^{1}(x)$:

$$F_{1}(\mathbf{x}) = \frac{1}{2} \sum_{i} e_{i}^{2} (q_{i}^{\uparrow}(\mathbf{x}) + q_{i}^{\downarrow}(\mathbf{x})) \qquad g_{1}(\mathbf{x}) = \frac{1}{2} \sum_{i} e_{i}^{2} (q_{i}^{\uparrow}(\mathbf{x}) - q_{i}^{\downarrow}(\mathbf{x}))$$

$$i = \text{index of quark flavor}$$

Transverse Spin Structure Function

- The Transverse SSF, g_2 , dominates the cross section when the target spin is perpendicular to the lepton helicity
- g₂ is combination of twist-2 (q-q) and twist-3 (q-g) components

$$g_{2}(\boldsymbol{x}, \boldsymbol{Q}^{2}) = g_{2}^{WW}(\boldsymbol{x}, \boldsymbol{Q}^{2}) + \overline{g}_{2}(\boldsymbol{x}, \boldsymbol{Q}^{2})$$

$$= -g_{1} + \int_{x}^{1} g_{1}(\boldsymbol{x}') \frac{d\boldsymbol{x}'}{\boldsymbol{x}'} - \int_{x}^{1} \frac{\partial}{\partial \boldsymbol{x}'} [\frac{m}{M} \boldsymbol{h}_{T}(\boldsymbol{x}', \boldsymbol{Q}^{2}) + \boldsymbol{\xi}(\boldsymbol{x}', \boldsymbol{Q}^{2})] \frac{d\boldsymbol{x}'}{\boldsymbol{x}'}$$

- g_2^{WW} (Wandzura-Wilczek) part depends on g_1
- h_{τ} is transversity SSF
- *ξ* represents twist-3 quark-gluon correlations.

Twist-3 d₂

- QCD's Operator-Product Expansion (OPE):
 - relates $\boldsymbol{g}_1, \boldsymbol{g}_2$ moments with calculable twist-2 (\boldsymbol{a}_N), twist-3 (\boldsymbol{d}_N) matrix elements

$$\int_{0}^{1} x^{N} g_{1}(x, Q^{2}) dx = \frac{1}{2} a_{N} + O(M^{2}/Q^{2}), \qquad N = 0, 2, 4, \dots$$

$$\int_{0}^{1} x^{N} g_{2}(x, Q^{2}) dx = \frac{N}{2(N+1)} (d_{N} - a_{N}) + O(M^{2}/Q^{2}), \qquad N = 2, 4, \dots$$

*d*_N measures twist-3 contributions

$$d_2 = \int_0^1 x^2 (2g_1 + 3g_2) dx = 3\int_0^1 x^2 \overline{g_2}(x, Q^2) dx$$

SANE Overview

- Proton spin structure function $g_2(x, Q^2)$, spin asymmetry $A_1(x, Q^2)$ at 2.5 $\leq Q^2 \leq 6.5$ GeV² and Bjorken x of 0.3 $\leq x \leq 0.8$
- Learn all we can about proton SSF's from an inclusive double polarization measurement
 - Twist-3 effects from SSF moments
 - Comparisons with Lattice QCD, QCD sum rules, bag models, chiral quarks
 - Exploration of "high" x region: A_1 's approach to x = 1
 - Test polarized local duality for final state mass W > 1.4 GeV
- Will take place in 2008, in Hall C of Jefferson Lab, using highest available beam energy (6 GeV)

Expected Results: Spin Asymmetry

$$\mathbf{A}_{1} = \frac{\sigma_{1/2}^{T} - \sigma_{3/2}^{T}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}} = \frac{1}{F_{1}} (\mathbf{g}_{1} - \gamma^{2} \mathbf{g}_{2})$$

 Measuring the beam-target asymmetry for two values of the polarization angle w.r.t. the beam:

$$\mathbf{A}_{\parallel} = \frac{\sigma^{(\uparrow\downarrow)} - \sigma^{(\downarrow\downarrow)}}{\sigma^{(\uparrow\downarrow)} + \sigma^{(\downarrow\downarrow)}}, \mathbf{A}_{\perp} = \frac{\sigma^{(\uparrow\rightarrow)} - \sigma^{(\downarrow\leftarrow)}}{\sigma^{(\uparrow\rightarrow)} + \sigma^{(\downarrow\leftarrow)}}$$

we can then extract

$$A_{1} = \frac{1}{(E+E')D} ((E-E'\cos\theta)A_{\parallel} - \frac{E'\sin\theta}{\cos\phi}A_{\perp})$$
$$A_{2} = \frac{\sqrt{Q^{2}}}{2ED'} (A_{\parallel} + \frac{E-E'\cos\theta}{E'\sin\theta\cos\phi}A_{\perp})$$

Expected Results (cont.)

SANE expected errors for $\overline{d}_2 = \int_{xmin}^{xmax} x^2 (2g_1 + 3g_2) dx$

- $\delta d_2/d_2(Q^2 = 3 \text{GeV}^2) = 4\%$ for 0.29 < x < 0.85
- $\delta \overline{d}_2 / d_2 (Q^2 = 3.5 \text{ to } 6.5 \text{ GeV}^2) = 2.5\% \text{ for } 0.41 < x < 0.96$

Kinematics and World Data

Experimental Setup

Target-

BETA

HMS

He Bag

Target

- UVa Polarized NH₃
- B = 80°, 180°
- **Electron Arm**
- BETA
- Background, Calibration
- HMS Chicane
- Beamline
- Polarization >75%
- Chicane (for B=80°)
- He Bag

Big Electron Telescope Array

- Big Cal Calorimeter (GEp-III): Energy, Position
- Lucite Hodoscope: Position, Background Reduction
- Gas Cerenkov: Electron Detection, Pion rejection
- Front Hodoscope: Low Q² Electron/Positron Differentiation

Characteristics:

- Effective solid angle of 0.194 sr
- Energy resolution of $5\%/\sqrt{E(GeV)}$
- Angular resolution ~ 1mr
- Vertex Resolution ~ 5mm
- 1000:1 pion rejection

BigCal

- Final Destination: Shower
- Energy, Position Resolution
- Built for GEp-III
- **Big**: 1744 Pb-glass bars
 - 1024 3.8x3.8cm² (Protvino)
 - 720 4x4cm² (Yerevan)
- Expertise from GEp

BigCal Calibration

- Before run: *ep* elastic coincidences with HMS
 - HMS will give momentum of proton, determining electron
- Neutral Pion mass measurement
 - Catching both photons in BigCal will allow mass reconstruction
 - Will allow monitor of calibration throughout experiment

Lucite Hodoscope

- 28 Scintillating acrylic glass bars, 240cm from target
- Position; insensitive background from outside target chamber
- Curved to 240 cm to allow normal incidence from target
- A. Ahmidouch, S. Danagoulian, collaborators from NC A&T State U.

Gas Čerenkov Detector

- Efficient electron detection, Pion rejection 1000:1
- Dry nitrogen radiator n=1.000279
- 4 spherical and 4 toroidal mirrors with 8 3" photomultiplier tubes
- Z.-E. Meziani and Temple Collaborators

Front Tracker

- Bicron Plastic Scintillator detector in front of Cerenkov, just 50cm from target
- 3 Y-planes (133 bars), 1 X plane (73)
- Electron or positron?
- 5T target magnet bend path
- Position measurement close to target field
- M. Khandaker (Norfolk S.U.), C.Butuceanu (U. Regina)

Simulation

- Geant3 (BETA) and Geant4 (Cerenkov, Temple U)
- Anticipate detector response
 - Event generation in increasingly realistic detector geometry
 - Reconstruction to process created ntuple
- Being reworked to interface directly to analyzer ntuple
- G. Warren, J. Maxwell, H.Baghdasaryan, O. Rondon

UVa Polarized Target

- Dynamic Nuclear Polarization
 - Hyperfine transitions induced by microwave pumping
- Typical characteristics:
 - B field of 5 T
 - Frozen Solids: NH₃
 - NMR measures polarization
 - $I_{\text{beam}} \approx 80 \text{ nA}$
 - Average in-beam proton polarization ~70%
 - "Open" Geometry

Minutes

Polarization (%)

SANE Test Run

- Time allotted before the resumption of GEp
- Hodoscope mounted to BigCal frame, Cerenkov and Tracker mounted to stand, wired
- March 30th to April 3rd
- BETA fully formed for the first time, took data with beam, analyzer tested
- Large amounts of data from all detectors, promising first steps

Status Summary

- PAC31 re-approved SANE as E07-003 with "A" rating
- 27 days plus 14 calendar days of commisioning (70 days on the floor)
- Scheduled to install June, run October until the end of the year
- Jonathan and I moving to Newport News in May to commence full-time target work in test lab

Questions?

Experimental Design

Beam Line

Asymmetry A₁

 Spin Asymmetry A₁ is related to the SSF's by way of the unpolarized structure function F₁:

$$A_{1}(Q^{2}, v) = \frac{\sigma_{1/2}^{T} - \sigma_{3/2}^{T}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}} = \frac{1}{F_{1}}(g_{1} - \gamma^{2}g_{2}) \qquad \gamma^{2} = \frac{4M^{2}x^{2}}{Q^{2}}$$

- UVa Polarized Target at JLab allows measurement of \mathbf{A}_{\perp} , as well as \mathbf{A}_{\parallel} , from which we extract \mathbf{A}_{1} , \mathbf{A}_{2} : $\mathbf{A}_{1} = \frac{C}{D} (\mathbf{A}_{\parallel} - d\mathbf{A}_{\perp}) \qquad \mathbf{A}_{2} = \frac{C}{D} (\mathbf{C}^{\dagger} \mathbf{A}_{\parallel} + d^{\dagger} \mathbf{A}_{\perp})$
- Where C is the longitudinal polarization of the virtual photon, and
 D is the virtual photon depolarization

Structure Functions

- Quark distributions inside the nucleon are described by four structure functions:
 - Structure functions: F₁, F₂ cross section
 - Spin Structure Functions: g_1, g_2 polarization observables
- In Quark-Parton Model, we can write F₁ and g₁ in terms of helicity dependent quark distribution functions, q_i¹ (x) :

$$F_{1}(\mathbf{x}) = \frac{1}{2} \sum_{i} e_{i}^{2} (q_{i}^{\uparrow}(\mathbf{x}) + q_{i}^{\downarrow}(\mathbf{x}))$$
$$g_{1}(\mathbf{x}) = \frac{1}{2} \sum_{i} e_{i}^{2} (q_{i}^{\uparrow}(\mathbf{x}) - q_{i}^{\downarrow}(\mathbf{x}))$$

i = index of quark flavor