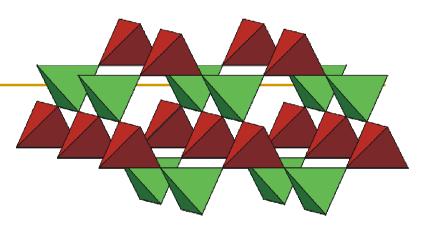
Order by Distortion and Chiral Magnetism in CdCr₂O₄

Gia-Wei Chern
JOHNS HOPKINS



Collaborators

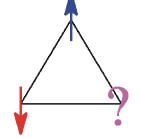
- O. Tchernyshyov (JHU).
- C. Fennie (Argonne).
- R. Moessner (Max-Planck).
- S.-H. Lee (UVA).
- A. Sushkov (UMCP).
- D. Drew (UMCP).

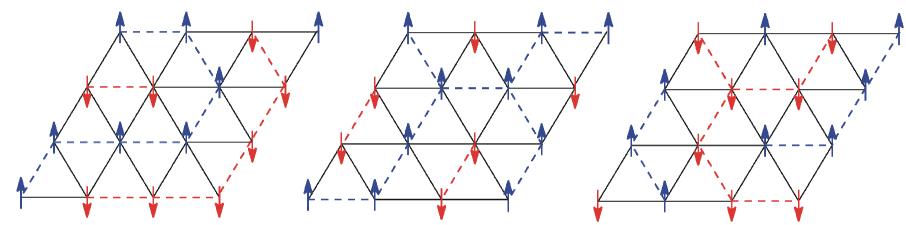
Outline

- Geometrical frustration. Pyrochlore antiferromagnet.
- Spin-lattice coupling and Jahn-Teller instability.
- Spin-Peierls phases in pyrochlore antiferromagnet.
- The case of $CdCr_2O_4$:
 - Lattice distortion: Broken parity.
 - Chiral ground state: Spiral magnetic order.
- Theoretical model for the magnetic spirals.
- Summary and open questions.

Geometrical frustration

Triangular Ising antiferromagnet





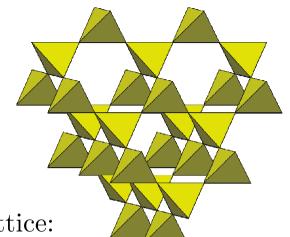
- One frustrated bond on each \triangle .
- Infinitely many ground state.
- Finite entropy density: S = 0.323 per spin at T = 0.
- No spin order. Spin correlations are critical: $\langle \mathbf{S}_0 \cdot \mathbf{S}_{\mathbf{r}} \rangle \sim C/r^2$.

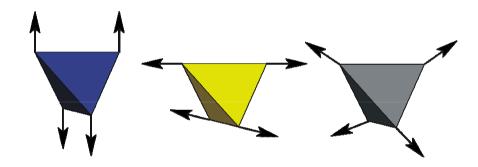
G. H. Wannier, R.M.F. Houtappel (1950)

Geometrical frustration

Pyrochlore antiferromagnet

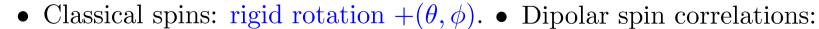
$$E = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j = \frac{J_1}{2} \sum_{\boxtimes} \mathbf{S}_{\boxtimes}^2 + \text{const.}$$





Single tetrahedron:

• Quantum spins: 2S + 1.



- No spin order as $T \to 0$.
- A classical spin liquid below Θ_{CW} .
- Extensive ground-state degeneracy.
- Finite entropy at T = 0: $S_{\text{Pauling}} = \frac{1}{2} \log \frac{3}{2}$ (Ising spin).
- Artificial magnetic field:

$$\mathbf{S}_{\boxtimes} = 0 \Longrightarrow \nabla \cdot \mathbf{B} = 0.$$

$$\langle B_{\alpha}(0)B_{\beta}(\mathbf{r})\rangle \propto \frac{3\cos^2\theta - 1}{r^3}.$$

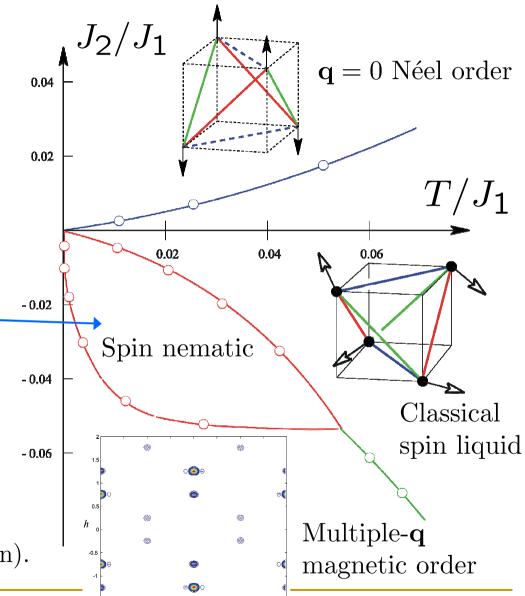
Huge degeneracy — Hypersensitivity

Relieving the frustration:

- Further neighbor interactions: Néel order, spin nematic.
- Dzyaloshinskii-Moriya $\mathbf{D} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$: Non-collinear magnetic order.
- Quantum fluctuations: Valence-Bond Crystal (S = 1/2).
- Coupling to orbital degrees of freedom: Néel order, ex: ZnV₂O₄, MnV₂O₄.
- Coupling to lattice: Néel order, ex: ZnCr₂O₄, CdCr₂O₄.

Phase diagram:

 $J_1 - J_2$ Heisenberg spins on pyrochlore lattice



G.-W. Chern, R. Moessner, and O. Tchernyshyov, (in preperation).

University of Virginia, 11 Feb 2008

Phase diagram:

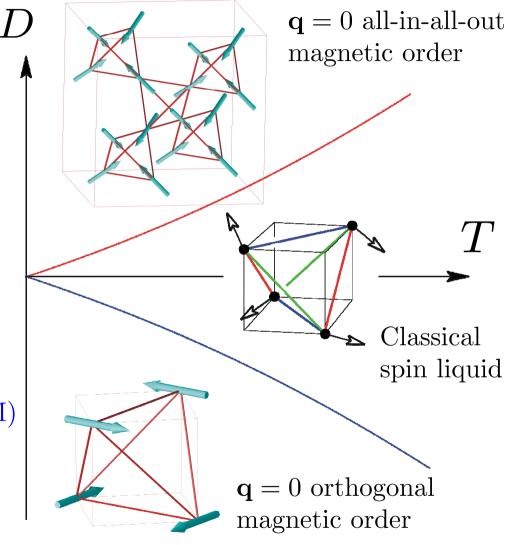
Dzyaloshinskii-Moriya interaction: $\mathbf{D} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$

D > 0 (direct DM)

• Important to the spirals observed in CdCr₂O₄.

D < 0 (indirect DM)

Elhajal *et al.* Phys. Rev. B **71** 094420 (2005).

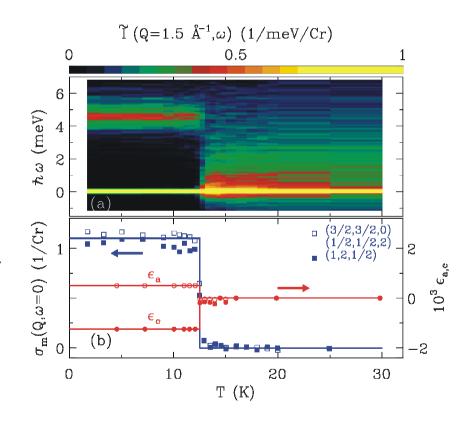


What do pyrochlore magnets actually do?

S.-H. Lee et al. (2000)

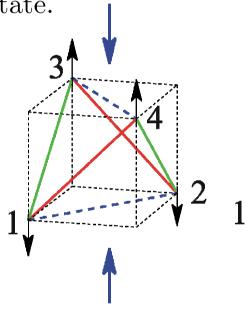
Spinel ZnCr₂O₄

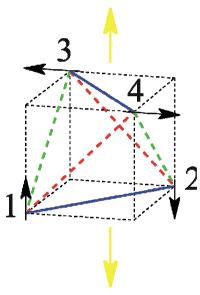
- Cr^{3+} : $3d^3$, S = 3/2, L = 0.
- Heisenberg antiferromagnet.
- $J = 4.5 \text{ meV}, \, \Theta_{\text{CW}} = \underline{390 \text{ K}}.$
- No spin order down to <u>12 K</u>.
- First-order transition at T = 12 K: Cubic $Fd\bar{3}m \to \text{Tetragonal } I4_1/amd$. Paramagnetic $\to \text{AF spin order}$.
- Spin-Peierls-like phase transition?



Spin-Teller effect: single tetrahedron

- High symmetry: T_d group. Continuously degenerate ground state.
- Spin-Lattice coupling: $E_{ij} = J(r_{ij}) \mathbf{S}_i \cdot \mathbf{S}_j$.
- Unequal angles between spin: $F_{ij} = -(dJ/dr_{ij}) (\mathbf{S}_i \cdot \mathbf{S}_j).$
- Spin-driven Jahn-Teller effect.





- Y. Yamashita and K. Ueda (2000).
- O. Tchernyshyov., R. Moessner, S.L. Sondhi (2002).

Spin-Teller instability:

O. Tchernyshyov et al., (2002).

Group-theoretical analysis

• Forces on red, green, and blue bonds:

$$- f_{xx} = \mathbf{S}_0 \cdot \mathbf{S}_1 + \mathbf{S}_2 \cdot \mathbf{S}_3.$$

$$- f_{yy} = \mathbf{S}_0 \cdot \mathbf{S}_2 + \mathbf{S}_3 \cdot \mathbf{S}_1.$$

$$- f_{zz} = \mathbf{S}_0 \cdot \mathbf{S}_3 + \mathbf{S}_1 \cdot \mathbf{S}_2.$$

- $3f = A_1 + E$.
- Singlet A_1 : Breathing phonon mode $F_{A_1} = f_{xx} + f_{yy} + f_{zz} = \text{const.}$



• <u>Doublet E</u> $f = (f_1, f_2)$:

$$- f_1 = (f_{xx} + f_{yy} - 2f_{zz})/\sqrt{6}.$$

$$-f_2 = (f_{xx} - f_{yy})/\sqrt{2}.$$

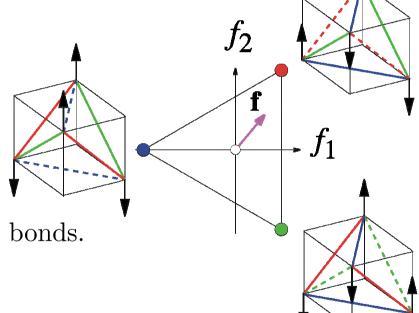
- Effective coupling: $-J'(\mathbf{f} \cdot \mathbf{x})$
 - $-x_1$: tetragonal distortion.
 - $-x_2$: orthorhombic distortion.

Ground states of magnetoelastic coupling

$$E(\mathbf{x}, \mathbf{f}) = \frac{kx^2}{2} - J'(\mathbf{x} \cdot \mathbf{f}).$$

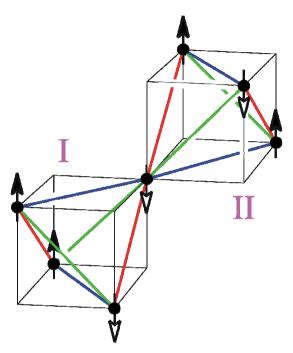
$$\Rightarrow E_{\text{eff}}(\mathbf{f}) = -\frac{J'^2}{2k} |\mathbf{f}|^2 = -K \sum_{ij} (\mathbf{S}_i \cdot \mathbf{S}_j)^2.$$

- Collinear gound states:
 - 3 primary colors. (q = 3 Potts).
 - Tetragonal distortion: along x, y, and z.
 - 2 frustrated and 4 happy bonds.
- White = undistorted.



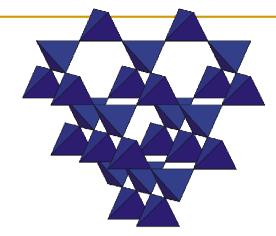
Generalization to pyrochlore lattice

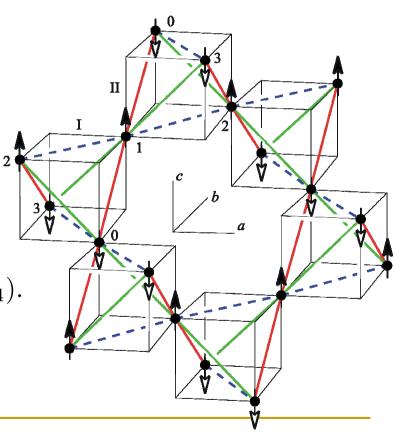
- Distortion with $\mathbf{q} = 0$: two inequivalent tetrahedra I and II.
- Inversion: $\mathbf{f}^{\mathbf{I}} \xrightarrow{I} \mathbf{f}^{\mathbf{II}}$.
- Symmetry group: $Fd\bar{3}m \to O_h = T_d \bigotimes I$.
- Bond variables: $\mathbf{g} = \mathbf{f}^{\mathrm{I}} + \mathbf{f}^{\mathrm{II}}$, $\mathbf{u} = \mathbf{f}^{\mathrm{I}} \mathbf{f}^{\mathrm{II}}$. Even (E_g) and odd (E_u) phonons.
- Integrating out phonons: $E_{\text{eff}}(\mathbf{g}, \mathbf{u}) = -(J'^2/2k_g)|\mathbf{g}|^2 - (J'^2/2k_u)|\mathbf{u}|^2.$
- Coupling term $\propto (1/k_u 1/k_g) (\mathbf{f}^{\mathrm{I}} \cdot \mathbf{f}^{\mathrm{II}})$
 - $-k_g < k_u$ (softer E_g): Ferromagnetic q=3 Potts model.
 - $-k_u < k_q$ (softer E_u): Antiferromagnetic q=3 Potts model.



Softer even phonon

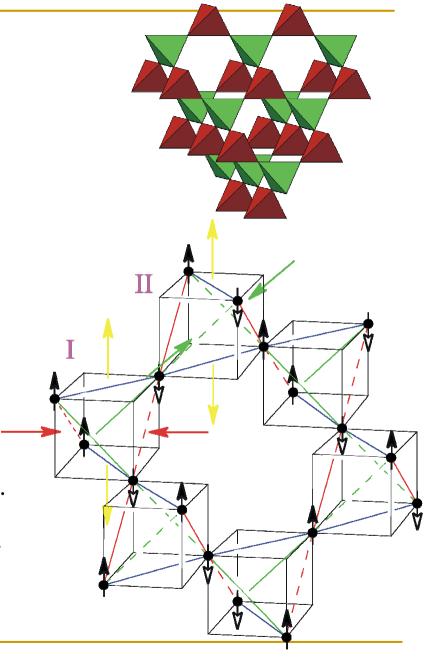
- Softer $\mathbf{q} = 0$ even phonon E_q .
- Bond order: Blue state.
- Macroscopic tetragonal distortion: a = b > c (c.f. $\operatorname{ZnCr}_2\operatorname{O}_4$).
- Spin-Peierls transition:
 - order parameter: $\mathbf{g} = \mathbf{f}^{\mathrm{I}} + \mathbf{f}^{\mathrm{II}}$.
 - Landau free energy: $\mathcal{F} = ag^2 + bg^3 \cos 3\theta_g + cg^4.$
 - 1st-order transition. (c.f. $ZnCr_2O_4$).
- $\mathbf{q} = 0$ Néel order.





Softer odd phonon

- Softer $\mathbf{q} = 0$ odd phonon E_u .
- Bond order: red+green state.
- Tetragonal distortion a = b < c:
 - Tetrahedra A: flattened $\parallel x$.
 - Tetrahedra B: flattened $\parallel y$.
- Spin-peierls order parameter $\mathbf{u} \neq 0, \mathbf{g} \neq 0.$
- Collinear spin order with $\mathbf{q} = (0, 0, 1)$.
- The commensurate limit of CdCr₂O₄.

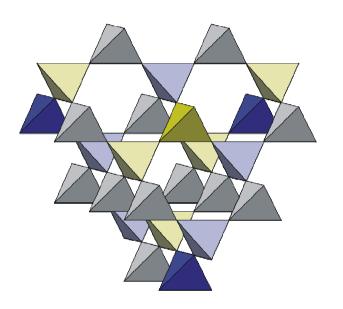


Lattice distortion: ZnCr₂O₄

- 1st-order phase transition at T = 12.5 K.
- Overall distortion: a = b > c.
- Non-uniform lattice distortion: soft even phonon with $\mathbf{q} = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}.$
- Quadrupled unit cell: $\sqrt{2} \times \sqrt{2} \times 2$.
- Spin-peierls order parameters: $\mathbf{g}_{(\frac{1}{2}\frac{1}{2}\frac{1}{2})}, \mathbf{g}_{(\frac{1}{2}\frac{1}{2}\frac{1}{2})}, \mathbf{g}_{(\frac{1}{2}\frac{1}{2}\frac{1}{2})}, \mathbf{g}_{(\frac{1}{2}\frac{1}{2}\frac{1}{2})}.$
- Magnetic order at T = 12.5 K.
 - Non-collinear spin order.
 - $-\mathbf{q} = \{\frac{1}{2}, \frac{1}{2}, 0\} \text{ and } \mathbf{q} = \{1, 0, \frac{1}{2}\}.$

S.-H. Lee $et \ al. \ (2007)$.

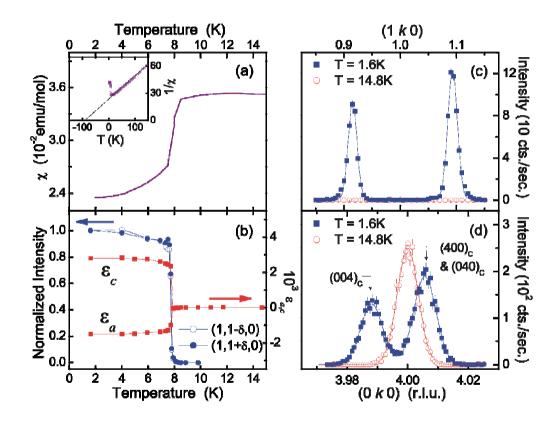
H. Ueda et al. (2003).



CdCr2O4: Experiments

- 1st-order transition at T = 7.8 K.
- Tetragonal distortion a = b < c.

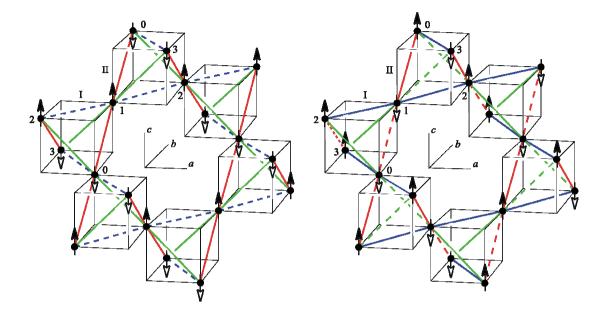
 red+green state.
- Incommensurate magnetic order: $\mathbf{Q} = (0, \delta, 1) \text{ with } \delta \sim 0.09.$
- Coplanar spins: $\mathbf{S} \perp y$ -axis. (the spiral axis).



J.-H. Chung et al., (2005)

CdCr2O4: ab initio Calculation

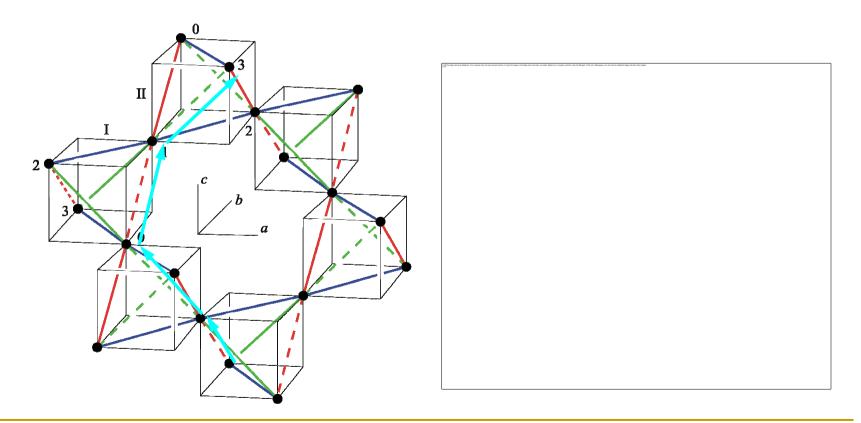
- LSDA+U method.
- $U = 3 \text{ eV}, J_H = 0.9 \text{ eV}.$
- a = 8.54 Å(ab initio)a = 8.59 Å(Exp)
- C. Fennie (unpublished).



$$I4_1/amd~(E_g)$$
 $I4_122~(E_u)$ Experiment $\Delta\epsilon_a \times 10^3$ $+3.2$ -2.9 -1.7 $\Delta\epsilon_c \times 10^3$ -9.5 $+2.5$ $+2.5$ $\Delta E_S~(\text{meV/f.u.})$ $+0.7$ -5.4 blue state red+green state

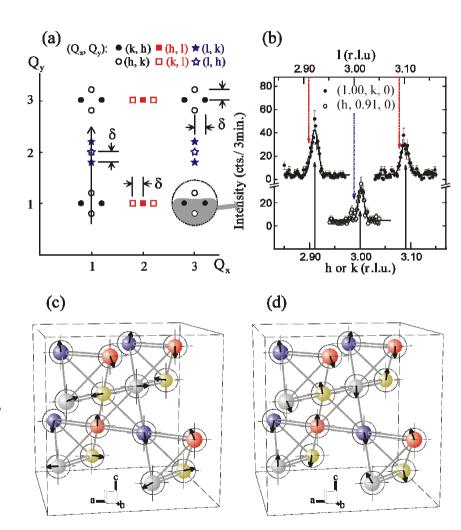
A Chiral pyrochlore lattice

- Broken parity: red+green distortion.
- Frustrated (parallel spins) bonds form a spiral.



A theory for the spiral magnetic order?

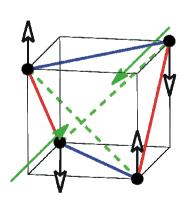
- Magnetic spirals:
 - $\mathbf{q} = (0, \delta, 1).$
 - $-\mathbf{S} \perp y$ -axis.
- The red+green state:
 - Chiral lattice.
 - Spin-orbital⇒ magnetic spirals ?
 - $-\mathbf{q} = (0,0,1)$ collinear spins $\Rightarrow \mathbf{q} = (0,\delta,1)$ spiral?



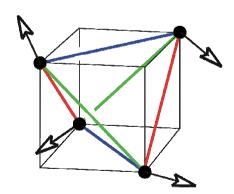
Theoretical model: Energy scales

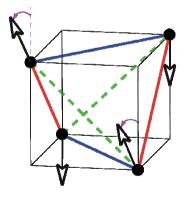
$$J\gg K\gg D$$

- NN exchange: $rac{oldsymbol{J}}{oldsymbol{J}}\sum_{\langle ij
 angle}\mathbf{S}_i\cdot\mathbf{S}_j.$
- Hard constraint: $\mathbf{S}_{\boxtimes} = 0.$
- Huge degeneracy.
- Spin-lattice coupling: $k(\delta r)^2/2 - J'\delta r(\mathbf{S}_i \cdot \mathbf{S}_j). \longrightarrow \mathrm{DM}$ interaction: $\Rightarrow -K(\mathbf{S}_i \cdot \mathbf{S}_i)^2$.
- Broken parity.
 - Collinear spins.



- Spin-orbital coupling $\mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$.
 - Spiral magnetic order.
 - Chiral ground state.



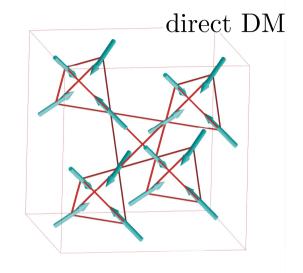


Dzyaloshinskii-Moriya interaction

Spin-orbital coupling⇒ DM interaction:

$$E_{\mathrm{DM}} = \sum_{\langle ij \rangle} \mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j).$$

direct DM indirect DM



indirect DM

M. Elhajal et al., (2005).

Staggered magnetizations

$$E_{\rm DM} = -D[\hat{\mathbf{x}} \cdot (\mathbf{L}_2 \times \mathbf{L}_3) + \hat{\mathbf{y}} \cdot (\mathbf{L}_3 \times \mathbf{L}_1) + \hat{\mathbf{z}} \cdot (\mathbf{L}_1 \times \mathbf{L}_2)].$$

•
$$S_{\boxtimes} = S_0 + S_1 + S_2 + S_3 = 0.$$

•
$$L_1 = S_0 + S_1 - S_2 - S_3$$
.

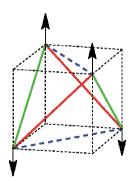
•
$$\mathbf{L}_2 = \mathbf{S}_0 - \mathbf{S}_1 - \mathbf{S}_2 + \mathbf{S}_3$$
.

•
$$L_3 = S_0 - S_1 - S_2 + S_3$$
.

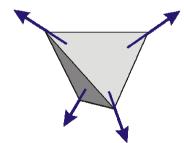
• Chirality of DM interaction:

D > 0: direct.

D < 0: indirect.



$$\mathbf{L}_1 = \mathbf{L}_2 = 0, \, \mathbf{L}_3 = 4S\hat{\mathbf{z}}.$$



$$\mathbf{L}_1 = \frac{4S}{\sqrt{3}}\hat{\mathbf{x}}, \ \mathbf{L}_2 = \frac{4S}{\sqrt{3}}\hat{\mathbf{y}}, \ \mathbf{L}_3 = \frac{4S}{\sqrt{3}}\hat{\mathbf{z}}.$$

$$\mathbf{L}_1 = 2S(\hat{\mathbf{x}} + \hat{\mathbf{y}}), \ \mathbf{L}_2 = 2S(\hat{\mathbf{x}} - \hat{\mathbf{y}}), \ \mathbf{L}_3 = 0.$$

Independent degrees of freedom

Classical spins on a tetrahedron:

- Ground state constraint: $\mathbf{S}_{\boxtimes}=0.$

•
$$D = 8 - 3 = 5$$
: (θ, ϕ) + rigid rotation.

$$f_1 = (\phi_1^2 + \phi_2^2 - 2\phi_3^2)/\sqrt{6},$$

$$f_2 = (\phi_1^2 - \phi_2^2)/\sqrt{2}.$$

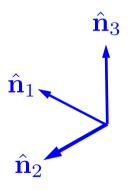
D=2: bond doublet $\mathbf{f}=(f_1,f_2)$

$$D = 3$$
:
Euler angles
for the triad $\hat{\mathbf{n}}_i$

 $-\hat{\mathbf{n}}_i \perp \hat{\mathbf{n}}_i$.

• Parametrization: $\mathbf{L}_i = 4S \, \phi_i \, \hat{\mathbf{n}}_i$.

 $-\phi_1^2 + \phi_2^2 + \phi_3^2 = 1.$



Perturbing the collinear state

• Néel order of red+green state:

-
$$\mathbf{q} = (0, 0, 1)$$
. $e^{i\mathbf{q}\cdot\mathbf{r}} = \pm 1$.
- $\mathbf{L}_{1}^{I} = 4S\,\hat{\mathbf{n}}\,e^{i\mathbf{q}\cdot\mathbf{r}}$, $\mathbf{L}_{2}^{I} = \mathbf{L}_{3}^{I} = 0$.
- $\mathbf{L}_{2}^{II} = 4S\,\hat{\mathbf{n}}\,e^{i\mathbf{q}\cdot\mathbf{r}}$, $\mathbf{L}_{1}^{II} = \mathbf{L}_{3}^{II} = 0$.

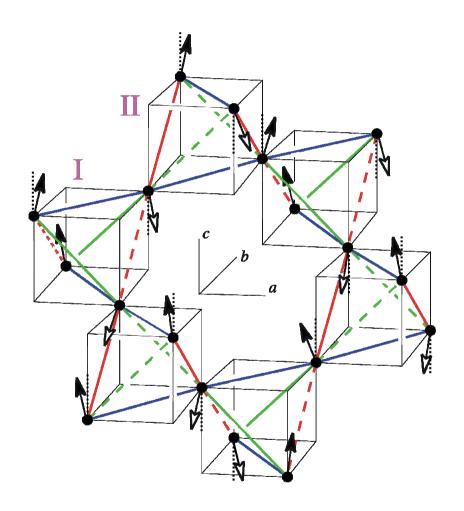
• Add a small perturbation on I:

$$- \mathbf{L}_{i}^{\mathrm{I}} = 4S \,\phi_{i}(\mathbf{r}) \,\hat{\mathbf{n}}_{i}(\mathbf{r}) \,e^{i\mathbf{q}\cdot\mathbf{r}}.$$

$$- \phi_{1} \approx 1 - (\phi_{2}^{2} + \phi_{3}^{2})/2.$$

$$- \phi_{2}, \,\phi_{3} \ll 1.$$

• The magnetic state of type-II tetrahedra is encoded in $\mathbf{L}_{i}^{\mathrm{I}}$.



Magnetic state of sublattice II

• Constraint from J:

$$\mathbf{S}_{\boxtimes}^{\mathrm{II}} = \mathbf{S}_{0}^{\mathrm{I}}(\mathbf{r}) + \mathbf{S}_{1}^{\mathrm{I}}(\mathbf{r} + \mathbf{a}_{1})$$
$$+\mathbf{S}_{2}^{\mathrm{I}}(\mathbf{r} + \mathbf{a}_{2}) + \mathbf{S}_{3}^{\mathrm{I}}(\mathbf{r} + \mathbf{a}_{3}) = 0$$

• Gradient expansion:

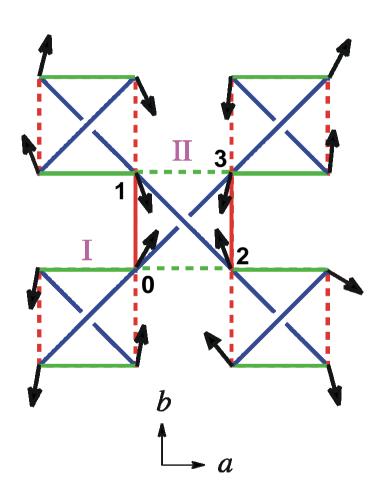
$$\mathbf{S}_{\boxtimes}^{\mathrm{II}} = \phi_3 \,\hat{\mathbf{n}}_3 - \partial_y \,\hat{\mathbf{n}}_1 = 0.$$

$$\implies \phi_3 = \hat{\mathbf{n}}_3 \cdot \partial_y \,\hat{\mathbf{n}}_1$$

• Néel vectors of type-II tetrahedron:

$$\mathbf{L}_{1}^{\mathrm{II}} = \phi_{2} \,\hat{\mathbf{n}}_{2} - \partial_{z} \,\hat{\mathbf{n}}_{1},$$

$$\mathbf{L}_{2}^{\mathrm{II}} = \hat{\mathbf{n}}_{1}, \ \mathbf{L}_{3}^{\mathrm{II}} = -\partial_{x} \,\hat{\mathbf{n}}_{1}.$$



Effective energy functional

• Magneto-elastic energy $E_{me} = -K_u |\mathbf{u}|^2 = -K_u (\mathbf{f}^{\mathrm{I}} - \mathbf{f}^{\mathrm{II}})^2$:

$$\Rightarrow E_{me} = K_u S^4 \left[(\partial_x \hat{\mathbf{n}}_1)^2 + (\partial_y \hat{\mathbf{n}}_1)^2 + 2 (\partial_z \hat{\mathbf{n}}_z)^2 - (\hat{\mathbf{n}}_2 \cdot \partial_z \hat{\mathbf{n}}_1)^2 \right].$$

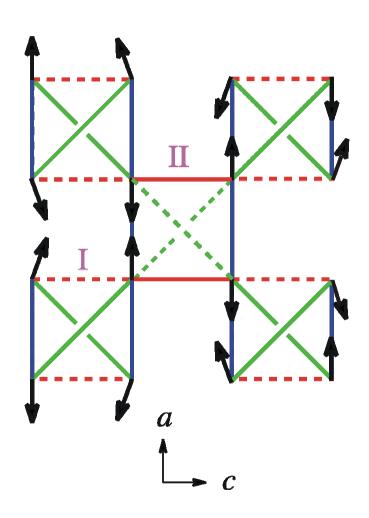
• DM interaction $E_{\rm DM} = \sum_{\langle ij \rangle} \mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$: Lifshitz invariants

$$\Rightarrow E_{\rm DM} = -DS^2 \,\hat{\mathbf{n}}_1 \cdot (\hat{\mathbf{x}} \times \partial_x \hat{\mathbf{n}}_1 + \hat{\mathbf{y}} \times \partial_y \hat{\mathbf{n}}_1 - \hat{\mathbf{z}} \times \partial_z \hat{\mathbf{n}}_1).$$

• Minimization of $E_{me} + E_{\rm DM} \longrightarrow {\rm Magnetic\ spirals.}$

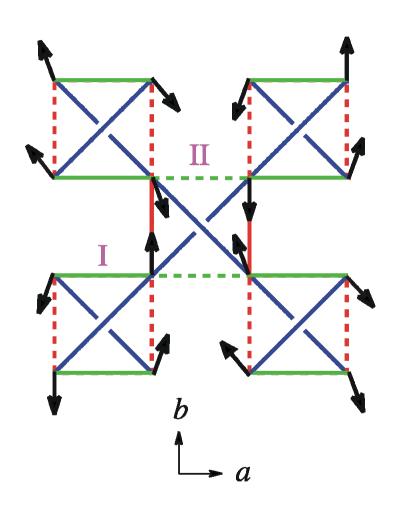
Spiral magnetic order I

- Coplanar spins rotating about the *y*-axis:
 - $\mathbf{L}_{1}^{\mathrm{I}} = 4S e^{i\mathbf{q}\cdot\mathbf{r}}(\cos\delta y, 0, \sin\delta y).$ $\mathbf{L}_{2}^{\mathrm{I}} = \delta \hat{\mathbf{y}} \times \mathbf{L}_{1}^{\mathrm{I}}, \ \mathbf{L}_{3}^{\mathrm{I}} = 0.$
 - $-\delta = D/K_u S^2 \ (\sim 0.09 \ {\rm Exp.})$
 - $-\mathbf{q}_M=(0,\delta,1).$
- Sublattice II remains collinear.
- Equivalent to spirals rotating about the x-axis: $I \longleftrightarrow II$.
- Consistent with experiments.



Spiral magnetic order II

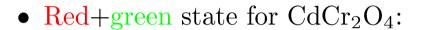
- Coplanar spins rotating about the z axis:
 - $\mathbf{L}_{1}^{\mathrm{I}} = 4S e^{i\mathbf{q}\cdot\mathbf{r}} (\cos \delta z, \sin \delta z, 0).$
 - $-\delta = D/K_u S^2.$
 - $-\mathbf{q}_{M}=(0,0,1+\delta).$
- Preserve the symmetry between sublattices I and II.
- Not observed in experiment.
- Unfavorable due to large AF J_3 : $E_{\text{NNN}} = J_3 S^2 (\partial_z \hat{\mathbf{n}}_1)^2$. $(J_3 \approx 0.3 J_1 \ ab \ initio \ \text{calculation})$.



Summary

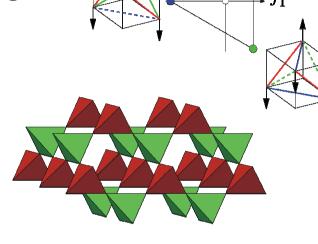
• Geometrical frustration leads to extensive degeneracy.

• Frustration relief through spin-lattice couplng: Collinear spins and falttened tetrahedron.



- Tetragonal distortion a = b < c.
- Collinear spin order with $\mathbf{q} = (0, 0, 1)$.
- Broken parity and a chiral lattice.

- Spin-orbital coupling transfers the lattice chirality to spins: $\mathbf{q} = (0, 0, 1) \rightarrow (0, \delta, 1)$.
- Dzyaloshinskii-Moriya interaction.
- Effective field theory for the spirals.



Open questions

- $CdCr_2O_4$
 - $-I4_1/amd$ v.s. $I4_122$. Broken parity?
 - X-ray scattering. Second-harmonic generation.
 - Spin-Peirls order parameter $\mathbf{u} \to -\mathbf{u}$: 2nd-order transition v.s. strong 1st-order transition at $T=7.8~\mathrm{K}$?
 - Spinwave spectrum. DM induced excitation gap?

• $ZnCr_2O_4$

- Nonuniform distortion dominated by $\mathbf{q} = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$ phonons.
- 8-component spin-Peierls order parameter $\mathbf{g}_{\{\frac{1}{2}\frac{1}{2}\frac{1}{2}\}}$: no cubic term in Landau expansion v.s. strong 1st-order transition at T=12.5 K.
- Non-collinear magnetic order below T_c ? $\mathbf{q} = \{\frac{1}{2}, \frac{1}{2}, 0\}$ and $\{1, 0, \frac{1}{2}\}.$