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One-parameter scaling theory for non-interacting electrons: 
the origin of the common wisdom “all states are localized in 2D”

Abrahams, Anderson, Licciardello, 
and Ramakrishnan, PRL 42, 673 
(1979)

G ~ Ld-2 exp(-L/L loc)

metal (dG/dL>0)
insulator

insulator

insulator  (dG/dL<0)

Ohm’s law in d dimensions

QM interference

L

G = 1/R
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Suggested phase diagrams for strongly interacting 
electrons in two dimensions
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Tanatar and Ceperley, 
Phys. Rev. B 39, 5005 (1989)

Attaccalite et al. 
Phys. Rev. Lett. 88, 256601 (2002)
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Why Si MOSFETs?

It turns out to be a very convenient 2D system to study strongly-interacting regime 
because of:

• large effective mass m*= 0.19 m0 
• two valleys in the electronic spectrum
• low average dielectric constant e=7.7

As a result, at low densities, Coulomb energy strongly exceeds Fermi energy: EC >> EF

rs = EC / EF >10 can easily be reached in clean samples
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Strongly disordered Si MOSFET

(data of Pudalovet al.)

� Consistent (more or less) with the one-parameter scaling theory

strong insulator
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Kravchenko, Mason, Bowker, 
Furneaux, Pudalov, and 
D’Iorio, PRB 1995

Clean sample, much lower electron densities
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Klapwijk’s sample: Pudalov’s sample:

In very clean samples, the transition is practically universal:
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measured in different labs)
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clean sample: disordered sample:

… in contrast to strongly disordered samples:

� Clearly, one-parameter scaling 
theory does not work here
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The effect of the parallel magnetic field:
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(spins aligned)

Magnetic field, by aligning spins, changes metallic R(T) to insulating:
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Referee A:
“The paper should not be published in PRL. Everyone knows 
there is no zero-temperature conductivity in 2-d.”

Referee B:
“The reported results are most intriguing, but they must be 
wrong.  If there indeed were a metal-insulator  transition in 
these systems, it would have been discovered years ago.”

Referee C:
“I cannot explain the reported behavior offhand.  Therefore, it 
must be an experimental error.”

Reaction of referees:

... I remember being challenged over that well-known fact that all states 
were localized in two dimensions, something that made no sense at all in 
light of the experiments I had just shown.

R. B. Laughlin, Nobel Lecture
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(Hanein, Shahar, Tsui et al., PRL 1998)

However, later similar transition 
has also been observed in other 2D 
structures:

•p-Si:Ge (Coleridge’s group; Ensslin’s
group)

•p-GaAs/AlGaAs (Tsui’s group, 
Boebinger’s group)

•n-GaAs/AlGaAs (Tsui’s group, 
Stormer’s group, Eisenstein’s group)

•n-Si:Ge (Okamoto’s group, Tsui’s
group)

•p-AlAs (Shayegan’s group)
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(Physics Today “Search and 
Discovery” July 1997)

(Nature 389, 
“News and views”
30 October 1997)
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(Nature 400, 
“News and views”
19 August 1999)

(The Economist “Science and Technology” July 1997)



9/28/2007 University of Virginia

• Scaling theory of localization: the origin of the common wisdom “all 
electron states are localized in 2D”

• Samples

• What do experiments show?

• What do theorists have to say?

• Interplay between disorder and interactions: experimental test

• “Clean” regime: diverging spin susceptibility

• Summary



9/28/2007 University of Virginia

non-Fermi liquid:
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continued.... (superconductivity)
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continued.... (superconductivity)
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continued.... (new quantum phase prior to Wigner crystallization)
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continued.... (spin-orbit interaction )



9/28/2007 University of Virginia

continued.... (percolation)
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Charging/discharging of interface traps:

Temperature-dependent screening:

continued....

Spin-orbit scattering:
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…and, finally, an unspecified mechanism:

continued....
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Now, a more reasonable approach
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Corrections to conductivity due to electron-electron interactions 
in the diffusive regime (Tτ < 1)

� always insulating behavior

However, later this prediction was shown to be incorrect

(0<F<1, N.B.: F is not the Landau Fermi-liquid constant)
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Zeitschrift fur Physik B (Condensed Matter) -- 1984 -- vol.56, no.3, pp. 189-96 

Weak localization and Coulomb interaction in disordered systems

Finkel'stein, A.M. 
L.D. Landau Inst. for Theoretical Phys., Acad. of Sci., Moscow, USSR
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� Insulating behavior when interactions are weak 
� Metallic behavior when interactions are strong
�Effective strength of interactions grows as the temperature decreases

Altshuler-Aronov-
Lee’s result Finkelstein’s & Castellani-

DiCastro-Lee-Ma’s term
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Recent theory of the MIT in 2D
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Punnoose and Finkelstein, Science
310, 289 (2005)

interactions ∞
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metallic phase stabilized 
by e-e interaction

disorder takes over

QCP
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Low-field magnetoconductance in the diffusive regime yields 
strength of electron-electron interactions
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First, one needs to ensure that the system is in the diffusive regime (Tτ < 1).

One can distinguish between diffusive and ballistic regimes by studying 
magnetoconductance:
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- diffusive: low temperatures, higher disorder (Tt < 1).

- ballistic: low disorder, higher temperatures (Tt > 1).

The exact formula for magnetoconductance (Lee and Ramakrishnan, 1982):
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Experimental results (low-disordered Si MOSFETs; 
“just metallic” regime; ns= 9.14x1010 cm-2):
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Temperature dependences of the 
resistance (a)and strength of interactions (b)

This is the first time effective strength of interactions 
has been seen to depend on T
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Experimental disorder-interaction flow diagram of the 2D electron liquid
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Experimental vs. theoretical flow diagram
(qualitativecomparison b/c the 2-loop theory was developed for multi-valley systems)
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Quantitativepredictions of the one-loop RG for 2-valley systems
(Punnoose and Finkelstein, Phys. Rev. Lett. 2002)

Solutions of the RG-equations for ρρρρ << ππππh/e2:
a series of non-monotonic curves  ρρρρ(T).   After 
rescaling, the solutions are described by asingle
universal curve:

max

max max

ρ(T) = ρ R(η)

η = ρ ln(T /T)

ρ(
T

)
γ 2

(T
)

ρmax ln(T/Tmax)

Tmax

ρmax

γ2 = 0.45

For a 2-valley system (like Si MOSFET),

metallic ρ(T) sets in when γ2 > 0.45
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Resistance and interactions vs. T

Note that the metallic behavior sets in when γγγγ2 ~ 0.45, 
exactly as predicted by the RG theory
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Comparison between theory (lines) and experiment (symbols)
(no adjustable parameters used!)
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g-factor grows as T decreases
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2D electron gas Ohmic contact

SiO2

Si

Gate

Modulated magnetic field
B + δB

Current amplifierVg

+

-

Magnetic measurements without magnetometer

suggested by B. I. Halperin (1998); first implemented by O. Prus, M. Reznikov, U. Sivan et al. (2002)

i ~ dµ/dB = - dM/dns

1010 Ohm
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Raw magnetization data: induced current vs. gate voltageIntegral of the previous slide gives M (ns):

complete spin polarization
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Spin susceptibility exhibits critical behavior near the 

sample-independent critical density nχ :  χ ~ ns/(ns – nχ)
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Anderson insulator

paramagnetic Fermi-liquid
Wigner crystal?

Liquid ferromagnet?

Disorder increases at low density 
and we enter “Finkelstein regime”

Density-independent disorder
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SUMMARY:

• Competition between electron-electron interactions and disorder leads to 
the existence of the metal-insulator transition in two dimensions.  The 
metallic state is stabilized by the electron-electron interactions.  In the 
insulating state, the disorder takes over.

• Modern renormalization-group theory (Punnoose and Finkelstein, Phys. Rev. 

Lett. 2002;Science 2005)gives quantitatively correct description of the 
metallic state without any fitting parameters.


