How Statistics can Improve your Experiment

Jim Linnemann
Michigan State University
University of Virginia HEP Seminar
Feb 6, 2008

Two topics

Event weighting: competitive with ML and less computation

Evaluating Systematic Errors usual methods don't get all variation

Phystat.org

 conferences every $2 y$ or soAn open, loosely moderated repository for code, tools, and documents relevant to statistics in physics applications. Search and download access is universal; package submission is loosely moderated for suitability.
Using the Site

- Lists of packages
- Search for a package
- Submit a Package
- Comment on a package (not yet available)

About the Repository

- Repository Policies and Procdures
- The Phystat Repository Steering Committee
- Comment on the repository site or policies

PHYSTAT Conference Links

- PHYSTAT $\$ 07$ (CERN) $\$ 05$ (Oxford) $\$ 03$ (SLAC) $\$ 02$ (Durham)
- Phystat Workshops: 006 (BIRS/Banff) 000 (Fermilab) 00 (CERN)
- More Conferences and Workshops ...

Lists and Statistics Resources

- The R Project For Statistical Computing OStatCodes (Center for Astrostatistics) OStatistical Software Resources on the Web
- More resources ...

Event Weighting: The Context

Milagro cosmic γ ray experiment
2630 m altitude $=750 \mathrm{~g} / \mathrm{cm}^{2}$ (of 1030) overburden
$\mathrm{H}_{2} \mathrm{O}$ Cherenkov pond (+ tank surface array) $=$ calorimeter after 20.5 Xo, 8.3入
Task: tell if hadron or γ started the shower AND: most cosmic rays are hadron-initiated (p, He,...)
No big surprise that $\langle B\rangle \approx 10^{3}\langle S\rangle$

A. Abdo, B. Allen, D. Berley, T. DeYoung, B. L. ingus, R. W. Ellsworth, M.M. Gonzalez, J.A. Goodman, C. M. Hoffman, P. Huntemeyer, B. Kolterman, C.P. Lansdell, J.T. Linnemann J. Mc Mnery, A I Mincen? Nemethy, J, Pret, J.M. Ryan, P.M. Saz Parkinson A Shoup, Gsimis,

- New York University A.J. Smith, C W Sulivan, D, A. williams, Xa Vasilelou, G, B. Yocho aiz

How Does Milagro Work?

- Detect Particles in Extensive Air Showers from Cherenkov light created in $60 \mathrm{~m} \times 80 \mathrm{~m} \times 8 \mathrm{~m}$ pond containing filtered water - Reconstruct shower direction to $\sim 0.5^{\circ}$ from the time different PMTs are hit
- 1700 Hz trigger rate mostly due to Extensive Air Showers created by cosmic rays
- Field of view is $\sim 2 \mathrm{sr}$ and the average duty factor is
 >90\%

Inside the Milagro Detector

Milagro Background Rejection

A_{4} Distribution

Background Rejection Parameter

nFit. \# PMTs used in the angle
reconstruction
Q-Factor as a function of $\mathbf{A}_{\mathbf{4}}$

S/B increases with increasing A_{4} so analysis weights events by S/B as determined by the A_{4} value of the event

HAWC site is

Sierra Negra, Mexico

- 4100 m above sea level
- Latitude of 19 deg N
- Easy Access
- 2 hr drive from Puebla
- 4 hr drive from Mexico City
- Existing Infrastructure
- Few km from the US/Mexico Large Millimeter Telescope
- Power, Internet, Roads
- Sierra Negra Scientific Consortium of ~ 7 projects
- Excellent Mexican

Collaborators

- ~15 Faculty at 7 institutions have submitted proposal to CONACYT for HAWC

- Experience in HEP, Auger, and astrophysics (including TeV)

Background Subtraction

To see a signal, must subtract background with 10^{-3} precision
We do this: use nearby sky ("sideband")

$$
m=n-\hat{B}
$$

Consider as a model for large-background LHC signal

Let's talk statistics

$\hat{\theta}$
Estimate of parameter

$E[\theta]$
Expected value

Gaussian Significance etc.

$Z=m / \delta m=m / \sqrt{\operatorname{Var}(m)}$
$1 / Z=$ fractional error $=\sigma / \mu=$ CoeffVVariation
$\mathrm{N}_{\mathrm{e}}=Z^{2} \quad$ Poisson Events w/o bkg, with same σ / μ

Ne $<m, B$; typical: $\boldsymbol{m} \sim 1000, \mathrm{Ne} \sim 100$

Significance Improvement

Let x be a discriminator variable (possibly n -dim) so pdf's $s(x)$ and $b(x)$ are different
Suppose I selected on $x>x_{c}$
Define $\quad \mathrm{Q}=\mathrm{Z}\left(\mathrm{x}>\mathrm{x}_{\mathrm{c}}\right) / \mathrm{Z}$ (no cut)
A good cut has $\mathrm{Q}>1$
Suppose background is well known:

$$
\delta m \approx \sqrt{\langle B\rangle} \text { Then } Q=\varepsilon_{s} / \sqrt{\varepsilon_{b}}
$$

More stringent than $\varepsilon_{\mathrm{S}}>\varepsilon_{\mathrm{b}}$
I've seen HEP cuts which fail this

Event Weighting

My colleague (Andy Smith of U Md) says I should weight $\mathrm{m}(\mathrm{x})$ (background subtracted data)
with

$$
\begin{aligned}
w(x) & =\langle S(x)\rangle /\langle B(x)\rangle \\
& =S(x) / b(x) \quad(\text { withina constant })
\end{aligned}
$$

event weights defined only to within a constant constant cancels in wtd averages and Ne

$$
\bar{f}=\left(\sum f \bullet w\right) /\left(\sum w\right) ; \quad N_{e}=\left(\sum w\right)^{2} / \sum w^{2}
$$

Cheating? Already subtracted $\mathrm{B}(\mathrm{x})$!

But he's right!

Want estimate of $M=$ true photons (Signal mean)
Naïve:

$$
\begin{aligned}
& \hat{M}_{1}=\sum m_{i} \\
& \operatorname{Var}\left(\hat{M}_{1}\right)=\sum \operatorname{Var}\left(m_{i}\right)=\left(\sum V_{i}\right)
\end{aligned}
$$

Sum: over bins of x for example; or integ. over all x
Better: if know $s(x)=$ shape of x distribution
each bin m_{i} is an estimate of M
BLUE (Best Linear Unbiased Estimator) Seek minimum variance estimator of M
Equivalently, χ^{2} fit for normalization multiplier over bins of x

TeV Gamma Ray Sky: Before Weighting

TeV Gamma Ray Sky:
 Before and After Weighting

BLUE treatment

Bin contents linear in parameter M :

$$
\left\langle m_{i}\right\rangle=M s_{i}
$$

Could have generalized with $\mathrm{s}_{\mathrm{i}} \rightarrow \mathrm{c}_{\mathrm{i}} \mathrm{s}_{\mathrm{i}}$
Gauss Markov: best estimator wtd by 1/variance:
$\hat{M}_{i}=m_{i} / s_{i} ; \quad \operatorname{Var}\left(\hat{m}_{i}\right)=V_{i} / s_{i}^{2} ; \quad w_{i}=1 / \operatorname{Var}\left(\hat{m}_{i}\right)$
$\hat{M}=\left(\sum \hat{M}_{i} w_{i}\right) / \sum w_{i}=\left(\sum m_{i} s_{i} / V_{i}\right) / \sum s_{i}{ }^{2} / V_{i}$
Best = min variance among linear estimators
Using expected variance, not just estimated...

Chi-squared Treatment

Define and minimize a fit to the histogram of x :

$$
\begin{aligned}
& \chi^{2}=\sum \frac{\left(m_{i}-M s_{i}\right)^{2}}{V_{i}} ; \frac{\partial \chi^{2}}{\partial M}=0 \text { for } \hat{M} \\
& \hat{M}=\left(\sum m_{i} s_{i} / V_{i}\right) /\left(\sum s_{i}^{2} / V_{i}\right)
\end{aligned}
$$

Bins could also be x bins over different data sets

$B L U E=L L S Q$

$V_{i}=$ Variance of $m_{i} \quad$ (Careful: use true variance) $\mathrm{s}(\mathrm{x})$ expected normalized signal distribution

$$
\Sigma s_{i}=1\left(=\int s(x) d x\right) ; b(x) \text { same for background }
$$

Then expected $\mathrm{m}_{\mathrm{i}}=\mathrm{M} \mathrm{s}_{\mathrm{i}}$ and

$$
\begin{aligned}
& \hat{M}=k \sum m_{i} \frac{s_{i}}{V_{i}}=k \sum m_{i} u_{i}, \\
& u_{i}=s_{i} / V_{i} ; \quad 1 / k=\sum \frac{s_{i}{ }^{2}}{V_{i}}
\end{aligned}
$$

Notice each m_{i} has a weight proportional to u_{i}
Can calculate M estimate just by accumulating weights!

Weight u_{i}

When $V_{i} \sim B_{i}$ (well-determined background)
and $B_{i}=B b_{i}$
$u_{i}=s_{i} / b_{i}$ in this limit
we have the advertised weight
(within a constant B, which doesn't matter)

When variance of mi and Bi estimated, use better Vi

V_{i} when B is uncertain

Reasonable: (assume Null Hyp for n in $m=n-B$; sidebands so $B=N_{B} / \tau$)
$\mathrm{V}(\mathrm{m}) \sim\left(\mathrm{n}+\mathrm{N}_{\mathrm{B}}\right) / \tau \quad$ (still close to B$)$

Better:

Calculate Z_{Bi} as in my PHYSTAT03 talk
Take $V \sim\left(\mathrm{~m} / \mathrm{Z}_{\mathrm{Bi}}\right)^{2} \quad$ (for $\mathrm{m}>0$)
But: Careful: any variance small due to fluctuations should really use $\mathrm{m}_{\mathrm{i}} \rightarrow \mathrm{Ms}_{\mathrm{i}}$
(expected m_{i}) in calculations
(see Louis Lyons book)

$$
\begin{aligned}
& \text { Variance Improvement } \\
& \operatorname{Var}(\hat{M})=k^{2} \sum \operatorname{Var}\left(m_{i}\right) u_{i}^{2}=k^{2} \sum V_{i} u_{i}^{2} \\
& \quad=k^{2} \sum\left(s_{i}^{2} / V_{i}\right)=1 / \sum\left(s_{i}^{2} / V_{i}\right)=k \\
& \operatorname{Var}\left(\hat{M}_{1}\right)=\sum V_{i} \text { (larger) }
\end{aligned}
$$

Cf. resistors: importance-weighted $R_{\|}$vs. R_{S} weighted variance \leq unweighted

The variances are equal if all $\mathrm{V}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}}$ equal
With optimum weights, approach Cramer-Rao min variance bound for enough data (GaussMarkov theorem)

Cramer Rao Bound

As long as range of range of x indep of θ
And can swap derivative under integral sign
$b=$ bias

$$
V[\hat{\vartheta}] \geq\left(1+\frac{\partial b}{\partial \theta}\right)^{2} / E\left[-\frac{\partial^{2} \ln L}{\theta^{2}}\right]
$$

$$
\text { Normal of known } \sigma \rightarrow \mathrm{V}>\sigma^{2}
$$

Efficient estimators when equality
ML whenever possible because:
If Efficient estimator exists, ML will find it
For large N, always efficient

Sensitivity to Assumptions

Since s and b normalized, indep. of absolute normalization assumptions.
However, sensitive to shape of s, b.
We know b accurately, fortunately:
b from data, so just use to check MC.
But s from MC: depends on
shower physics, and source energy spectrum Test fit by χ^{2} and pulls of fit of m's to s, M.

A surprising application

Consider a map of counts vs. 2-d position xy: sky map. Solve for sources by ML: consider all candidate positions, fit to photon excess * point spread function (angular resol)
many candidate pixels, events: ML infeasible
OR: weighting all events by

$$
w(x)=s(x y) /(b(x y)+\alpha s(x y))
$$

$s(x y)=$ point spread function
b(xy) ~ flat; so w(xy) ~ s(xy) ~ 2d Gaussian (ideal)
So $\Sigma \mathrm{w}, \sum \mathrm{w}^{2}$ at each sky position (ideogram/kernel est.)
"ugh, you smeared the map" -but it approaches ML!
Modest (10\%) gain in Z over "optimal" s/Vb bin size BIG gains when 3d: $\{x y, z\}$ where $s(x y, z)$ varies with z much more weight to events with good psf resolution!

General weighted event solution

Roger Barlow, J. Comp. Phys 72 (1987) p202
Write expected average weight in terms of parameter(s) and solve (Barlow):
$p(x)=\alpha s(x)+(1-\alpha) b(x)$, so expect
$\bar{w}_{d} \equiv \frac{1}{N} \sum w=\alpha \bar{w}_{s}+(1-\alpha) \bar{w}_{b} ;$ where
$\bar{w}_{s}=\int w(x) s(x) d x ; \quad \bar{w}_{b}=\int w(x) b(x) d x$
solve for α (unbiased for any w):
$\hat{\alpha}=\left(\bar{w}_{d}-\bar{w}_{b}\right) /\left(\bar{w}_{s}-\bar{w}_{b}\right)$

Why is weighting good?

Textbooks shows method of moments inefficient
ML typically has min var for parameters a moments: generally above min var bound
A "moment" is just some weighting function whose data average you calculate
Then solve for the parameters a by equating to expected moments as $f(a)$
Typically weights not chosen optimally

$$
w(x)=x^{k} \quad \text { (classical moments) }
$$

$$
\begin{aligned}
& \text { say } x=\cos \theta \text {, expect } f(x)=1+\alpha x^{2} ; \text { try } k=2 \\
& \text { solve }\left\langle x^{2}\right\rangle=\left\langle x^{2}\left(1+\alpha x^{2}\right)\right\rangle \text { for } \alpha
\end{aligned}
$$

need not be good for estimating your parameters!

Barlow Optimal Weights

Calculated above unbiased solution for parameters for general weight function $\mathrm{w}(\mathrm{x})$, and its variance
Calculus of variations: find function w(x) giving
minimum variance on parameter a (actually, on M) Finds for large number of events, w(x) solution gives same variance as ML (if $\mathrm{w}(\mathrm{x})$ is close to optimal).
But: with weighting, unlike ML,
you do NOT need to iterate through all events!
Shows variance less than cut on same distribution $w(x)$ Comment: a fit to the distribution (histogram) of $w(x)$ is also close to optimal

Barlow's Optimal solution:

$$
\begin{aligned}
& w(x)=s(x) /\left(b(x)+\alpha_{o} s(x)\right), \quad \alpha_{o}=M / B \\
&= r(x) /(1+\alpha r(x))=1 /(\alpha+1 / r(x)) \\
& \text { where } r(x)=s(x) / b(x)
\end{aligned}
$$

$w(x) \varepsilon[0,1] ; \quad$ truly optimal if $a_{0}=\alpha$
Cf. Neyman-Pearson best test variable:

$$
r(x)=s(x) / b(x)
$$

And discriminant variable

$$
\begin{aligned}
d(x) & =\text { posterior prob(s|x) } \\
& =s /(b+\alpha s), \alpha=\pi_{s} /\left(1-\pi_{s}\right)
\end{aligned}
$$

What if weights are wrong?

Barlow: Near (quadratic) optimum, parameter variance and Z estimates only slightly worse Note; MUST guess initial value for alpha, in order to estimate α : need α_{o} near true α

But: wrong s or $b=>$ biased estimate of M
you are fitting normalization to wrong shape

Relationship with BLUE

Barlow: knowing B reduces variance of M Still: using same $w(x)$ is optimal.
Now compare with subtraction:
$\mathrm{w}(\mathrm{x})=\mathrm{s}(\mathrm{x}) /(\mathrm{b}(\mathrm{x})+\mathrm{as}(\mathrm{x}))$
When $\alpha \ll 1$, we recover our s/b above.
(i.e. for small $\alpha, s / b$ is near optimal)

F. Tkachov Optimal Weight phyiscs/0001019=Part.Nucl.Lett.111(2002)28 physics/0604127

Elegant general principle for choosing w(x)
Again calculus of variations for minimum variance of parameter estimate
General:

$$
\begin{aligned}
& w(x, a)_{\mathrm{opt}}=C(a) \frac{\partial \operatorname{Ln}[p(x ; a)]}{\partial a}+D(a) \\
& M L: \Sigma \frac{\partial \operatorname{Ln}[p(x ; a)]}{\partial a}=0 \\
& \text { Let } p=(a s+b) /(1+a) \\
& w=s /(a s+b)-1 /(1+a) \rightarrow s /(a s+b)
\end{aligned}
$$

Caution: He is "cavalier" with normalization of $p(x)$

Simpler ML/moments solution

Parameterize $p=(a s+b) /(1+a) ; \quad a=(\alpha /(1-\alpha))$ Then

$$
\left\langle w_{d}\right\rangle=\int w(x) p(x) d x=\int \frac{(a s+b)}{a+1} \frac{s d x}{\left(a_{o} s+b\right)} \approx 1 /(a+1)
$$

Compare ML Solution :
$\sum w(x, a)=\frac{N}{a+1}$

A Pitfall in Evaluating Systematic Errors

Ideal evaluation of Systematics?

Suppose know (Bayesian) pdf of systematic effects: $\pi(\varphi) \rightarrow \pi(\mathrm{x}, \mathrm{y})$ in 2d examples l'll use e.g. $\{x, y\}=\{$ Jet Energy Scale factor, luminosity $\}$

Let $f(x, y)$ be what I am assessing systematic error of single top cross section Higgs mass
Upper Limit for SUSY in my channel
Nominal values for systematic params are at $\mathbf{x}_{0}, \mathbf{y}_{0}$.
Redefine as $(0,0)$, i.e. $(x, y) \rightarrow\left(x-x_{0}, y-y_{0}\right)$
Similarly, let $g(x, y)=f(x, y)-f\left(x_{0}, y_{0}\right)=f-f_{0}$ so $g(0,0)=0$
Systematic error $=$ (not quite a variance- f_{0} not E[f])

$$
V=\int d x d y g^{2}(x, y) \pi(x, y)
$$

Instead: Do "Standard" Systematic Evaluation

You have a list of systematics; you ran MC at 0 point
Now run MC at $+1 \sigma$ for each systematic
Resulting changes are $\mathrm{d}_{\mathrm{i}}=\mathrm{f}-\mathrm{f}_{\mathrm{o}} \quad S^{2}=\sum d_{i}^{2}$
Report Systematic Error:

$$
f_{o} \pm S
$$

the "graduate student" solution?

What Justifies This?

$1{ }^{\text {st }}$ order Variance Formula:

$$
V=\sum_{i} \sum_{j} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \operatorname{Cov}\left(x_{i}, x_{j}\right) ; \quad \text { eval } \frac{\partial f}{\partial x_{i}} \text { at } \vec{x}=0
$$

Nice: avoid distribution assumptions on π, just $\operatorname{Cov}(x)$ Claim can ignore cross terms:
$\operatorname{Cov}\left(x_{i} x_{j}\right)=0$: systematics (usually) uncorrelated What if your expt. contributes to PDF fits?
First order, so good for linear dependence of f on x But we do a bit better:
finite differences to estimate partials (from MC...) take into account some nonlinearity, right?

One Factor At A Time: OFAT

From my thesis advisor:
At physicist should be able to find and fix any one single problem.
$2 t$ should take 2 things both wrong at the same time to confuse a physicist.
Corollary:
Changing more than one thing at a time is asking for trouble.

V(exact) vs. S²(OFAT): How well do we do?

Take $x_{i} \rightarrow z_{i}=x_{i} / \sigma_{i}$ consider $z_{i}= \pm 1$
$V=a^{2}+b^{2}$
$f=x^{2}+y^{2}$
$V=3 a^{4}+2 a^{2} b^{2}+3 b^{4}$
$f=x y$
$V=a^{2} b^{2} \quad$ but
Truly linear
$S^{2}=\mathrm{V}$
OK as expect
quadratic
$S^{2}=a^{4}+b^{4} \quad$ not so hot
bilinear
$S=0$
complete failure

What went wrong?

Quadratic terms underestimated
finite diffs not enough to give effect on variance
Covariance $=0$ does not protect us from xy
$x y$ and derivatives 0 on axes- as if f indep. of x, y
$x y$ has twisting of f surface:
x derivatives depend on y and vice versa
Must consider off-axis points!

If you go to quadratic terms in Taylor series for V , need both xy and $\mathrm{x}^{2}, \mathrm{y}^{2}$ (consider rotations!)

Barlow: run at $\pm 1 \sigma, d_{i}=\left(f^{+}-f-\right) / 2$
makes quadratic $\rightarrow 0 \quad$...if you are asleep
You should notice $\left(f^{+}-f_{o}\right) \neq-\left(f^{-}-f_{o}\right)$ don't forget about the 0 point

"Postdoc Solution?"

You have a list of systematics; you ran MC at 0 point You run MC at $\pm 1 \sigma$ for each systematic
Resulting changes are $\mathrm{d}_{\mathrm{i}}{ }^{ \pm}$
Report Systematic Error:

$$
\begin{gathered}
\mathrm{S}_{\mathrm{u}}^{2}=\Sigma \max \left\{\mathrm{d}_{\mathrm{i}}^{+}, \mathrm{d}_{\mathrm{i}}^{-}\right\}^{2} \\
\mathrm{~S}_{\mathrm{d}}^{2}=\sum \min \left\{\mathrm{d}_{\mathrm{i}}^{+}, \mathrm{d}_{\mathrm{i}}\right\}^{2} \\
\operatorname{Report:}
\end{gathered}
$$

$$
f_{o-S d}^{+S u}
$$

Here we can check for or even account for asymmetry of uncertainties on effects of systematics; should at least notice quadratic, but still BLIND to $x y$.

DOE Design of Experiments not your funding agency

OFAT is not a statistician's term of endearment. They wish your thesis advisor had talked to them first:

Always change more than one at a time
Assume each run long enough to measure effects of interesting size
Search for effects in order of likely importance all linear (main effects) then bilinear (2 $2^{\text {nd }}$ order interactions) then 3fold etc
Typically a few effects dominate
One expects "interactions" to be small if each main effect of interaction is small (i.e. bare $x y$ term rare) Interaction: twisting in response plane, i.e. slope wrt a variable depends on value of another variable

Typical Goals of DOE

1) Optimization/search

Best pattern of points for searching for
best yield for curing tracker epoxy
least variance of mass vs. cuts
Look for pattern to find a hilltop
which direction, if any, uphill from here?
i.e. good point set for numerical derivatives
2) Robustification (Taguchi)

Look for max or min (stationary)
worry about simultaneously maximizing multiple objectives
Look for ridge (separate important from unimportant params)
strangely named metrics to optimize
Response surface methodology: characterize shape of f
pattern of points for data to fit to $2^{\text {nd }}$ degree curves
geometry to characterize classes of curves:
hilltop, ridge, rising ridge...
"composite designs" add points to basic design to better characterize area (e.g. near maxima)

Glossary

Factor $\quad x_{i}$	variable; systematic parameter
or from Analysis of Variance: linear combinations	

OFAT vs. Design

OFAT advantages
Simpler to set up (fewer changes from nominal)
OK if main effects dominate
Easier to analyze w/o specialized software
One bad run loses less information
Can identify curvature if use 0
Design advantages
Can estimate interactions (or show negligible) More important savings, the more variables Less error (all runs contribute to each effect) Can identify curvature if use 0

All DOE's change more than one factor at a time

2^{2} full factorial design 2 levels $+1,-1$;
Zx Zy
$+1 \quad+1$
$+1 \quad-1$
$-1 \quad+1$
$-1 \quad-1$
"Screening designs" in higher dimensions:
Not full 2^{k} combinations for 2 levels
See all main effects, and Groups of interactions
confound several low order, or low with high order

Calculating Main Effects and Interactions

Look at sign of factors in $\{x, y\}$ runs:
Sgn $\{x, y\}$ ++ +- -+ --
Sgn (xy) + - - +
run $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$[(1-3)+(2-4)] / 4=$ main effect in x
compare the 2 terms for consistency: look for twisting each term parallel to axes rather than on axes like $[(+0)-(-0)] / 2$
$[(1-2)+(3-4)] / 4=$ main effect in y
$[(1-2)+(4-3)] / 4=$ interaction $x y$
Or: fit Ax+By+Cxy to points

Sample calculations w/ DOE without 0 point

$\mathrm{f}=\mathrm{x}+\mathrm{y}$ no interactions

$$
\begin{aligned}
& V=a^{2} \\
& f=x y
\end{aligned}
$$

$V=a^{2} b^{2}$
$\mathrm{f}=\mathrm{x}^{2}+\mathrm{y}^{2}$
$V=3 a^{4}+2 a^{2} b^{2}+3 b^{4}$

$$
S^{2}=0 B A D \quad D O E=V
$$

$$
S^{2}=a^{4}+b^{4} \text { Ouch } \quad D O E=0 \text { Worse }
$$

DOE from sums of squares of main effects
Both need to explicitly look at 0 point to notice curvature and can be extended to estimate effects better

OFAT CAN'T see $x y$ even with 0 point added, but DOE can

Summary for Weighting

An optimal weight function can achieve ML accuracy

Weighting methods are powerful and simple

There is a rational scheme to choose optimal weight

Weighting (or fitting to weight distributions) is more accurate than cuts

Summary for Systematics

- Even if your systematics are independent, your measurement probably correlates them for you
- If you worry about curvature (up-down asymmetry) you need to worry about xy too
- OFAT is blind to multi-linear (xy-like) effects
- You MUST leave OFAT to see xy-like terms
- OFAT evaluation of systematics misses some of nonlinear effects
- Don't forget the point at nominal parameter values
- Statisticians have heard before from scientists who insist OFAT is the best/only way
- DOE might even help you-worth a think

References

My papers should appear soon at the phystat 07 web site phystat.org | 07 | Proceedings
I'm in the process of putting them on the arxiv server...

Weighting

Books by Cowan and by Fred James
Papers by Barlow and by Tkachov

Design of Experiments

Nancy Reid's talk at Phystat 2007
B. Gunter, Computers In Physics 7 May (1993) (not online alas-complain to AIP)
Can look at NIST handbook or Wiki for definitions and some discussions
Box Hunter \& Hunter "Statistics for Experimenters" good, but feels a bit wordy
Cox \& Reid "Theory of D.O.E" more compact but sometimes too terse

