
1

How Statistics can Improve How Statistics can Improve 

your Experimentyour Experiment

Jim Linnemann

Michigan State University

University of Virginia HEP Seminar

Feb 6, 2008



2

Two topicsTwo topics

Event weighting: competitive with ML

and less computation

Evaluating Systematic Errors

usual methods don’t get all variation
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Phystat.orgPhystat.org conferences every 2y or soconferences every 2y or so
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Event Weighting: The ContextEvent Weighting: The Context

Milagro cosmic γ ray experiment

2630 m altitude = 750 g/cm2 (of 1030) overburden

H2O Cherenkov pond (+ tank surface array) =

calorimeter after 20.5 Xo, 8.3λ

Task: tell if hadron or γ started the shower

AND: most cosmic rays are hadron-initiated (p, He,…)

No big surprise that SB 310
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Milagro Gamma Ray Observatory 
@ 8600’ altitude near Los Alamos, NM

A. Abdo, B. Allen, D. Berley, T. DeYoung,B.L. Dingus, R.W. Ellsworth, 

M.M. Gonzalez, J.A. Goodman, C.M. Hoffman,P. Huntemeyer, B. 

Kolterman, C.P. Lansdell, J.T. Linnemann, J.E. McEnery, A.I. Mincer, P. 

Nemethy, J. Pretz, J.M. Ryan, P.M. Saz Parkinson, A. Shoup, G. Sinnis, 

A.J. Smith, G.W. Sullivan, D.A. Williams, V. Vasileiou, G.B. Yodh
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How Does Milagro Work?How Does Milagro Work?

 Detect Particles in Extensive Air Showers from 

Cherenkov light created in 60m x 80 m x 8m pond 

containing filtered water

 Reconstruct shower direction to ~0.5° from the time 

different PMTs are hit

 1700 Hz trigger rate mostly due to Extensive Air 

Showers created by cosmic rays

 Field of view is ~2 sr and the average duty factor is 

>90%

8 meters

e m g

80 meters

50 meters

energy response

12 TeV
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Inside the Milagro DetectorInside the Milagro Detector



Milagro Background RejectionMilagro Background Rejection

 
mxPE

nFitfOut+fTop
=A


4

mxPE: maximum # PEs in bottom layer PMT

fTop: fraction of hit PMTs in Top layer

fOut: fraction of hit PMTs in Outriggers

nFit: # PMTs used in the angle 
reconstruction

S/B increases with 
increasing A4 so 
analysis weights 
events by S/B as 
determined by the A4

value of the event

Improves sensitivity by 

Background Rejection Parameter
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HAWC site is HAWC site is 

Sierra Negra, MexicoSierra Negra, Mexico
• 4100 m above sea level

• Latitude of 19 deg N

• Easy Access
• 2 hr drive from Puebla 

• 4 hr drive from Mexico City

• Existing Infrastructure
• Few km from the US/Mexico 

Large Millimeter Telescope

• Power, Internet, Roads

• Sierra Negra Scientific 

Consortium of ~7 projects 

• Excellent Mexican 

Collaborators
• ~15 Faculty at 7 institutions 

have submitted proposal to 

CONACYT for HAWC

• Experience in HEP, Auger, and 

astrophysics (including TeV)
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TeV TeV gg--rays: A New Windowrays: A New Window on the Skyon the Sky

0.1 GeV

Milagro 10 TeV gamma-ray

TeV gamma ray
Milagro HESS
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Background SubtractionBackground Subtraction

To see a signal, must subtract background 

with 10-3 precision

We do this: use nearby sky (―sideband‖)

Consider as a model for large-background 

LHC signal

Bnm ˆ
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Let’s talk statisticsLet’s talk statistics

Estimate of parameter

Expected value ][

ˆ





E
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Gaussian Significance etc.Gaussian Significance etc.
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Ne <  m, B;   typical: m~1000, Ne~100
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Significance ImprovementSignificance Improvement

Let x be a discriminator variable (possibly n-dim)

so pdf’s    s(x) and b(x)    are different

Suppose I selected on x>xc

Define      Q = Z(x>xc) / Z(no cut)

A good cut has Q > 1

Suppose background is well known:

More stringent than εs > εb

I’ve seen HEP cuts which fail this

bsQBm  /Then    
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Event WeightingEvent Weighting

My colleague (Andy Smith of U Md) says I should weight 

m(x)  (background subtracted data) 

with 

event weights defined only to within a constant

constant cancels in wtd averages and Ne

Cheating?  Already subtracted B(x)!

constant) a(within    )(/)(

)(/)()(
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But he’s right!But he’s right!
Want estimate of M = true photons (Signal mean)

Naïve:

Sum: over bins of x for example; or integ. over all x

Better: if know s(x) = shape of x distribution

each bin mi is an estimate of M

BLUE (Best Linear Unbiased Estimator)

Seek minimum variance estimator of M

Equivalently, χ2 fit for normalization multiplier

over bins of x

 





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TeV Gamma Ray Sky:TeV Gamma Ray Sky:

Before WeightingBefore Weighting
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TeV Gamma Ray Sky:TeV Gamma Ray Sky:

Before and After WeightingBefore and After Weighting
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Distribution of Excesses in the Galactic Plane

cut level

Crab

Nebula
Mrk 421

7 year data set (July 2000-July 2007)

Weighted analysis using A4 parameter
Best data from 2004 on with outriggers

Crab nebula 15 

Galactic plane clearly visible
Cygnus 

Region
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BLUE BLUE treatmenttreatment

Bin contents linear in parameter M:

Could have generalized with si → ci si

Gauss Markov: best estimator wtd by 1/variance:

Best = min variance among linear estimators

Using expected variance, not just estimated…

ii Msm 

iiiiiiii

iiiiiiii
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ChiChi--squared Treatmentsquared Treatment

Define and minimize a fit to the histogram of x:

Bins could also be x bins over different data sets

)//()/(ˆ

ˆfor  0;
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BLUE = LLSQBLUE = LLSQ
Vi = Variance of mi     (Careful: use true variance)

s(x) expected normalized signal distribution

Σsi = 1 (= ∫s(x)dx) ; b(x) same for background

Then expected mi = M si and 

Notice each mi has a weight proportional to ui

Can calculate M estimate just by accumulating weights!
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Weight uWeight uii

When Vi ~ Bi (well-determined background)

and Bi = B bi   

ui =  si / bi in this limit

we have the advertised weight

(within a constant B, which doesn’t matter)

When variance of mi and Bi estimated, use better Vi
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VVi i when B is uncertainwhen B is uncertain
Reasonable: (assume Null Hyp for n in 

m=n-B; sidebands so B = NB/τ)

V(m) ~ (n+NB)/τ (still close to B)

Better:

Calculate ZBi as in my PHYSTAT03 talk

Take V ~ (m/ZBi)2        (for m>0)

But: Careful: any variance small due to 
fluctuations should really use mi→Msi

(expected mi) in calculations  

(see Louis Lyons book)
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Variance ImprovementVariance Improvement

Cf. resistors: importance-weighted R║ vs. Rs
weighted variance ≤ unweighted

The variances are equal if all Vi, si equal

With optimum weights, approach Cramer-Rao 

min variance bound for enough data (Gauss-

Markov theorem)
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Cramer Rao BoundCramer Rao Bound
As long as range of range of x indep of θ

And can swap derivative under integral sign

b=bias

Normal of known σ → V > σ2

Efficient estimators when equality

ML whenever possible because:

If Efficient estimator exists, ML will find it

For large N, always efficient
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Sensitivity to AssumptionsSensitivity to Assumptions

Since s and b normalized, indep. of absolute 

normalization assumptions.

However, sensitive to shape of s, b.

We know b accurately, fortunately:

b from data, so just use to check MC.

But s from MC: depends on

shower physics, and source energy spectrum

Test fit by χ2 and pulls of fit of m’s to s, M.
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A surprising applicationA surprising application
Consider a map of counts vs. 2-d position xy: sky map.

Solve for sources by ML: consider all candidate positions, 
fit to photon excess * point spread function (angular 
resol)

many candidate pixels, events: ML infeasible

OR: weighting all events by 

w(x) = s(xy)/(b(xy) + αs(xy))

s(xy) = point spread function

b(xy) ~ flat; so w(xy) ~ s(xy) ~ 2d Gaussian (ideal)

So ∑w, ∑w2 at each sky position   (ideogram/kernel est.)

―ugh, you smeared the map‖ —but it approaches ML!

Modest (10%) gain in Z over ―optimal‖ s/√b bin size

BIG gains when 3d: {xy, z} where s(xy,z) varies with z 

much more weight to events with good psf resolution!
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General weighted event solutionGeneral weighted event solution

Roger Barlow,   J. Comp. Phys 72 (1987) p202Roger Barlow,   J. Comp. Phys 72 (1987) p202

Write expected average weight in terms of 

parameter(s) and solve (Barlow):
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Why is weighting good?Why is weighting good?
Textbooks shows method of moments inefficient

ML typically has min var for parameters a

moments: generally above min var bound

A ―moment‖ is just some weighting function whose data 
average you calculate

Then solve for the parameters a by equating to expected 
moments as f(a)

Typically weights not chosen optimally 

w(x) = xk (classical moments)

say x = cos θ,   expect f(x) = 1 + αx2; try k=2

solve <x2> = < x2 ( 1 + αx2 ) > for α

need not be good for estimating your parameters!
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Barlow Optimal WeightsBarlow Optimal Weights

Calculated above unbiased solution for parameters for 
general weight function w(x), and its variance

Calculus of variations: find function w(x) giving
minimum variance on parameter α (actually, on M)

Finds for large number of events, w(x) solution gives 
same variance as ML (if w(x) is close to optimal).

But: with weighting, unlike ML, 

you do NOT need to iterate through all events!

Shows variance less than cut on same distribution w(x)

Comment: a fit to the distribution (histogram) of w(x) is 
also close to optimal
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Barlow’s Optimal solution:Barlow’s Optimal solution:

w(x) =    s(x) / (b(x)+ αo s(x)),      αo = M/B

= r(x) / (1+ α r(x))  =   1/(α + 1/ r(x)),    

where r(x) = s(x)/b(x)

w(x) ε [0,1];          truly optimal if αo = α

Cf. Neyman-Pearson best test variable: 

r(x) = s(x)/b(x)

And discriminant variable  

d(x) = posterior prob(s|x)

= s / (b+ α s), α = πs/(1- πs)
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What if weights are wrong?What if weights are wrong?

Barlow:   Near (quadratic) optimum, parameter 
variance and Z estimates only slightly worse
Note; MUST guess initial value for alpha, in order 
to estimate α: need αo near true α

But: wrong s or b => biased estimate of M

you are fitting normalization to wrong shape
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Relationship with BLUERelationship with BLUE

Barlow: knowing B reduces variance of M

Still: using same w(x) is optimal.  

Now compare with subtraction:

w(x) = s(x)/(b(x) + αs(x))

When α<<1, we recover our s/b above.

(i.e. for small α, s/b is near optimal)
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F. Tkachov Optimal WeightF. Tkachov Optimal Weight
phyiscs/0001019=Part.Nucl.Lett.111(2002)28phyiscs/0001019=Part.Nucl.Lett.111(2002)28

physics/0604127physics/0604127

Elegant general principle for choosing w(x)

Again calculus of variations for minimum variance of 

parameter estimate

General:

Caution: He is ―cavalier‖ with normalization of p(x)
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Simpler ML/moments solutionSimpler ML/moments solution

Parameterize p = (as+b)/(1+a);  a = (α/(1- α))

Then 
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A Pitfall in Evaluating A Pitfall in Evaluating 

Systematic ErrorsSystematic Errors
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Ideal evaluation of Systematics?Ideal evaluation of Systematics?
Suppose know (Bayesian) pdf of systematic effects:  

π(φ) → π(x,y) in 2d examples I’ll use

e.g.  {x,y} = {Jet Energy Scale factor, luminosity}

Let f(x,y) be what I am assessing systematic error of

single top cross section

Higgs mass

Upper Limit for SUSY in my channel

Nominal values for systematic params are at xo,yo.  

Redefine as (0,0), i.e. (x,y) →(x-xo, y-yo)

Similarly, let g(x,y) = f(x,y)–f(xo,yo)=f-fo so g(0,0)=0

Systematic error =    (not quite a variance—fo not E[f])

),(),(2 yxyxgdydxV 
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Instead:  Do “Standard” Instead:  Do “Standard” 

Systematic EvaluationSystematic Evaluation

You have a list of systematics; you ran MC at 0 point

Now run MC at + 1 σ for each systematic

Resulting changes are di=f-fo

Report Systematic Error:

the ―graduate student‖ solution?


22

idS

Sfo 
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What Justifies This?What Justifies This?
1st order Variance Formula:

Nice: avoid distribution assumptions on π, just Cov(x)

Claim can ignore cross terms:

Cov(xi,xj) = 0 : systematics (usually) uncorrelated
What if your expt. contributes to PDF fits?

First order, so good for linear dependence of f on x

But we do a bit better: 

finite differences to estimate partials (from MC…)

take into account some nonlinearity, right?

0at eval    );,( 
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One Factor At A Time: OFATOne Factor At A Time: OFAT

From my thesis advisor:

A physicist should be able to find and fix 
any one single problem.  

It should take 2 things both wrong at the same time 
to confuse a physicist.

Corollary:

Changing more than one thing at a time 
is asking for trouble.
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V(exact) vs. SV(exact) vs. S22(OFAT):(OFAT):

How well do we do?How well do we do?
Take xi→ zi = xi /σi Take π(x,y) ~ N(0,a) X N(0,b)

consider zi = ±1

f=x+y Truly linear

V = a2 + b2 S2=V OK as expect

f = x2 + y2 quadratic

V = 3a4+2a2b2+3b4 S2=a4+b4 not so hot

f = xy bilinear

V = a2b2 but    S = 0 complete failure
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What went wrong?What went wrong?
Quadratic terms underestimated

finite diffs not enough to give effect on variance

Covariance = 0 does not protect us from xy

xy and derivatives 0 on axes— as if f indep. of x,y

xy has twisting of f surface:

x derivatives depend on y and vice versa

Must consider off-axis points!

If you go to quadratic terms in Taylor series for V, need    
both xy and x2, y2 (consider rotations!)

Barlow:  run at  ±1σ, di = (f +-f -)/2 

makes quadratic → 0   …if you are asleep

You should notice (f +  - fo) ≠ - (f - - fo)

don’t forget about the 0 point
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“Postdoc Solution?”“Postdoc Solution?”

You have a list of systematics; you ran MC at 0 point

You run MC at ± 1 σ for each systematic

Resulting changes are di
±

Report Systematic Error:

Su
2=  Σ max{di

+,di
-}2

Sd
2 = Σ min {di

+,di
-}2

Report:

Here we can check for or even account for asymmetry 
of uncertainties on effects of systematics; should at 
least notice quadratic, but still BLIND to xy.

Su

Sdof



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DOEDOE

Design of ExperimentsDesign of Experiments
not your funding agencynot your funding agency

OFAT is not a statistician’s term of endearment. They wish your 
thesis advisor had talked to them first:  

Always change more than one at a time

Assume each run long enough to measure effects of 
interesting size

Search for effects in order of likely importance

all linear (main effects)

then bilinear (2nd order interactions)

then 3fold etc

Typically a few effects dominate

One expects ―interactions‖ to be small if each main 
effect of interaction is small   (i.e. bare xy term rare)

Interaction: twisting in response plane, i.e. slope wrt a 
variable depends on value of another variable
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Typical Goals of DOETypical Goals of DOE
1) Optimization/search

Best pattern of points for searching for

best yield for curing tracker epoxy

least variance of mass vs. cuts

Look for pattern to find a hilltop

which direction, if any, uphill from here?

i.e. good point set for numerical derivatives

2) Robustification (Taguchi)

Look for max or min (stationary)

worry about simultaneously maximizing multiple objectives

Look for ridge (separate important from unimportant params)

strangely named metrics to optimize

Response surface methodology: characterize shape of  f

pattern of points for data to fit to 2nd degree curves

geometry to characterize classes of curves:

hilltop, ridge, rising ridge…

―composite designs‖ add points to basic design to better characterize 
area (e.g. near maxima)
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GlossaryGlossary
Factor      xi   variable;   systematic parameter

or from Analysis of Variance: linear combinations

Level values used:  2 level example   ±1σ; 3 levels {+ 0 -}

Additive f linear in xi’s

Main Effects linear terms

Active factors main effects which are significant

Interaction multilinear terms xixj or trilinear or higher

Curvature Quadratic term

Respose Surface f(x,y,…)

Twisting of Response Surface      

Confounding Fractional Design can’t Distinguish all interactions
can detect whether one of class active

ideally confound higher order with lower order

Factorial Design      plan for sampling xi space
Full: Lk   all combinations of L levels of k factors   

Fractional:  Lk-m   not all combinations   

k has ―subtracted‖ off m things confounded

)0,(),( xfyxf xx 
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OFAT vs. DesignOFAT vs. Design

OFAT advantages

Simpler to set up (fewer changes from nominal)

OK if main effects dominate

Easier to analyze w/o specialized software

One bad run loses less information

Can identify curvature if use 0

Design advantages

Can estimate interactions (or show negligible)

More important savings, the more variables

Less error (all runs contribute to each effect)

Can identify curvature if use 0
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All DOE’s change more than one All DOE’s change more than one 

factor at a timefactor at a time

22 full factorial design   2 levels +1, -1; 

Zx Zy

+1 +1

+1 -1

-1 +1

-1 -1

―Screening designs‖ in higher dimensions:

Not full 2k combinations for 2 levels 

See all main effects, and Groups of interactions

confound several low order, or low with high order
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Calculating Main Effects and Calculating Main Effects and 

InteractionsInteractions
Look at sign of factors in {x,y} runs:

Sgn {x,y} ++ +- -+ --

Sgn (xy) + - - +

run     1 2      3       4

[(1 - 3) + (2 - 4)]/4  = main effect in x

compare the 2 terms for consistency: look for twisting

each term parallel to axes 

rather than on axes like [(+0) – (-0)]/2

[(1 - 2) + (3 - 4)]/4   = main effect in y

[(1 - 2) + (4 - 3)]/4   = interaction xy

Or: fit Ax+By+Cxy to points
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Sample calculations w/ DOESample calculations w/ DOE
without 0 pointwithout 0 point

f=x+y no interactions

V = a2 + b2 = S2 OK DOE=V

f = xy

V = a2b2 S2 = 0  BAD           DOE=V

f = x2 + y2

V = 3a4+2a2b2+3b4 S2 =a4+b4 Ouch      DOE= 0 Worse

DOE from sums of squares of main effects

Both need to explicitly look at 0 point to notice curvature

and can be extended to estimate effects better

OFAT CAN’T see xy even with 0 point added, but DOE can
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Summary for WeightingSummary for Weighting

An optimal weight function can achieve ML accuracy

Weighting methods are powerful and simple

There is a rational scheme to choose optimal weight

Weighting (or fitting to weight distributions) 

is more accurate than cuts
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Summary for SystematicsSummary for Systematics
• Even if your systematics are independent, your 

measurement probably correlates them for you

• If you worry about curvature (up-down 
asymmetry) you need to worry about xy too 

• OFAT is blind to multi-linear (xy-like) effects

• You MUST leave OFAT to see xy-like terms

• OFAT evaluation of systematics misses some of 
nonlinear effects

• Don’t forget the point at nominal parameter 
values

• Statisticians have heard before from scientists who insist 
OFAT is the best/only way

• DOE might even help you—worth a think
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ReferencesReferences
My papers should appear soon at the phystat 07 web site  

phystat.org | 07 | Proceedings

I’m in the process of putting them on the arxiv server…

Weighting
Books by Cowan and by Fred James

Papers by Barlow and by Tkachov

Design of Experiments

Nancy Reid’s talk at Phystat 2007

B. Gunter, Computers In Physics 7 May (1993)  (not 
online alas—complain to AIP)

Can look at NIST handbook or Wiki for definitions and 
some discussions

Box Hunter & Hunter ―Statistics for Experimenters‖     
good, but feels a bit wordy

Cox & Reid ―Theory of D.O.E‖

more compact but sometimes too terse


