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Introduction

MN = c0 + c2 mπ
2 + c4 mπ

4 + . . .



Chiral perturbation theory provides a systematic method for 
discussing the physics at low energy by means of an effective
field theory.

Chiral perturbation theory:

The general Lagrangian can be written with an increasing 
number of derivatives and quark(meson)  mass terms.

£m = £2 + £4 + … ,  £MB = £MB
(1) + £MB

(2) + ...



The Feynman diagrams can be arranged as power counting 

The lowest order Lagrangian including baryons:

D = 4NL – 2IM – IB + Σ (2n ×××× N2n
M ) + Σ (n ×××× Nn

B )

The Feynman diagrams can be arranged as power counting 
scheme (qD or mπ

D).

D = 4 – 2 – 1 + 2 = 3



Treating the nucleons as relativistic Dirac fields does not satisfy the 
power counting. 

Heavy baryon chiral perturbation theory:

Separate the original baryon field into light and heavy components. 
Consider baryons as extremely heavy static source. 
The light component satisfies the massless Dirac equation.
The heavy component is suppressed by powers of 1/m.



is the massless field which has the following properties:

is the spin operator:



The Lagrangian in chiral perturbation theory

is changed to be:

The propagators for octet and decuplet baryons:

,

,



MN = a0 + a2 mπ
2 + a4 mπ

4 + . . . + χπ Iπ (mπ )

Leading order one loop Feynman diagram:  

With the dimensional regularization:









Chiral perturbation theory with dimensional regularization fails
to fit the lattice data.

The chiral expansion is not convergent.

High order terms are important at large pion mass.

How to solve this problem? How to build the high order termsHow to solve this problem? How to build the high order terms
into the one loop contribution and make the chiral expansion be
convergent quickly.

→→→→ Finite Range Regularization



DR:
Large contributions to the integral from k → ∞ portion of integral.
Baryons are hard point particle. 
Short distance physics is highly overestimated.

FRR:
Remove the incorrect short distance contribution associated with
the suppression of loop integral at ultraviolet region.the suppression of loop integral at ultraviolet region.
Baryons are soft particle with structure which results in a vertex
function in the loop integral.

• •



The loop integral in FRR:

u (k) is the regulator, for example for dipole:

Expand in mπ , 



In FRR, the nucleon mass is expressed as:

To any finite order, FRR is mathematically equivalent to 
dimensional regularization.
For small pion mass, FRR and DR give almost same results.
For large pion mass, can FRR fit lattice data?
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For other regulators:
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The FRR reproduces the lattice results very well.

The high order terms are really automatically included in the
one loop contribution in FRR.

The residual analytic terms have a good convergent behavior.

At any finite order, FRR and DR are equivalent. In this sense,
DR is an approximation of FRR at low pion mass.



The lowest order interaction:

Magnetic Form factors

In the heavy baryon formalism:

The compact notation:



Meson matrix:

Octet baryons:

Decuplet baryons:



Baryon octet magnetic moment Lagrangian:

At the lowest order:

Baryon decuplet magnetic moment Lagrangian:Baryon decuplet magnetic moment Lagrangian:

The transition magnetic operator:



The baryon magnetic moments can also be expressed as quark
magnetic moments.
For particular choice:

Nucleon magnetic moments in one loop level:Nucleon magnetic moments in one loop level:



The Pauli and Dirac form factors:

In terms of charge and magnetic form factors:

Equivalent definition of charge and magnetic form factors:



The one loop diagrams for magnetic form factors:



The contribution of diagram a:

For dimensional regularization, I1π
NN ∝ mπ .



The contribution of diagram b: O(mπ lnmπ )

The contribution of diagram c: O(mπ
2 lnmπ )



The contribution of diagram d: O(mπ
2 lnmπ )

The contribution of diagram e: O(mπ
2 lnmπ )



The contribution of diagram g: O(mπ
2 lnmπ )



The integrals are defined as:



Extrapolation results
The extrapolation of magnetic moments:

The mass relationships between mesons:
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Determination of Optimal Λ:Determination of Optimal Λ:

1. Have the best convergence, a4 → 0.
2. Have the best fit of lattice data, χ2 = ∑ (µfit – µlat)2 is small.
3. Produce reasonable nucleon magnetic moments.









The extrapolation of magnetic form factors:

At finite momentum, we do not expand the form factors in terms of
Q2 and Q4 as we did for the mπ dependence.

GM
N (mπ

2) = a0
N + a2

N mπ
2 + a4

N mπ
4 + ∑ GM

N (Loop)

a N = b N + b N Q2+ b N Q4 + . . .

a0 , a2 anda4 are determined from the lattice data at finite momentum
and Q2 dependence is included in the parameters.

a0
N = b1

N + b2
N Q2+ b3

N Q4 + . . .
a2

N = b4
N + b5

N Q2+ b6
N Q4 + . . .

a4
N = b7

N + b8
N Q2+ b9

N Q4 + . . .













Big error bars on lattice data.
Meson form factors.
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Quenched chiral perturbation theory
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Strange magnetic form factor



u-sea and d-sea quark have same contribution,  
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Baryon octet charge radii













Summary
The nucleon magnetic moments and form factors are extrapolated 
from the lattice data with FRR in chiral perturbation theory. The 
optimal Lambda is discussed in different methods. 

High order terms in the chiral expansion are important which can be 

To any finite order, FRR is mathematically equivalent to dimensional
regularization. At low pion mass, both FRR and DR give reasonable 
results. At large pion mass, DR fails while FRR works well.

High order terms in the chiral expansion are important which can be 
built in the one loop contribution in FRR. The residual analytic terms 
have a good convergent behavior.
The extrapolated magnetic moments, form factors and charge radii 
at physical pion mass are reasonable compared with the experimental 
values. 
The same method can be applied to the extrapolation of many other
lattice data in full QCD or quenched QCD.


