

Petar Maksimovic, for the CDF collaboration

- Introduction: what is Σ_{b} ?
- CDF detector, trigger, Λ_{b} sample
- Blind optimization, background estimates
- Fitting for the $\Sigma_{h}^{(*)}$ signals
- Systematics, significance

Why $\Sigma_{h}^{(\uparrow)}$?

- Most b-mesons found and their decays studied extensively
- Comparatively little is known about heavy baryons (but several c-baryons recently observed by B factories)
- Finding and studying b-baryons completes and checks the Standard Model
- Measuring masses, decay rates tests theoretical approaches (*description different from B mesons!*)
- Discovering new particles is cool! (And good practice for LHC too)

b-baryons with B=1,C=0,J^P = 1/2⁺, 3/2⁺

have	Notation	Quark content	JP	SU(3)	(I,I ₃)	S	В	Mass
	$\Lambda_{\rm b}^{0}$	b[ud]	1/2+	3*	(0,0)	0	1	5619.7±1.2±1.2 MeV
	Ξ _b ⁰	b[su]	1/2+	3*	(1/2,1/2)	-1	1	5.80 GeV
	[I] ^b	b[sd]	1/2+	3*	(1/2,-1/2)	-1	1	5.80 GeV
	$\Sigma_{\rm b}^{+}$	buu	1/2⁺	6	(1,1)	0	1	5.82 GeV
	$\Sigma_{\rm b}^{0}$	b{ud}	1/2+	6	(1,0)	0	1	5.82 GeV
	Σ_{b}^{-}	bdd	1/2+	6	(1,-1)	0	1	5.82 GeV
search	Ξ _b ⁰ ,	b{su}	1/2+	6	(1/2,1/2)	-1	1	5.94 GeV
	Ξ _b ⁰ ,	b{sd}	1/2+	6	(1/2,-1/2)	-1	1	5.94 GeV
for	$\Omega_{\rm b}^{0}$	bss	1/2+	6	(0,0)	-2	1	6.04 GeV
	$\Sigma_{\rm b}^{*+}$	buu	3/2+	6	(1,1)	0	1	5.84 GeV
	$\Sigma_{\rm b}^{*0}$	bud	3/2+	6	(1,0)	0	1	5.84 GeV
	Σ _b *-	bdd	3/2⁺	6	(1,-1)	0	1	5.84 GeV
	Ξ <mark>ь</mark> *0	bus	3/2+	6	(1/2,1/2)	-1	1	5.94 GeV
	Е <mark>ь</mark> *-	bds	3/2+	6	(1/2,-1/2)	-1	1	5.94 GeV
	Ω_{b}^{*-}	bss	3/2+	6	(0,0)	-2	1	6.06 GeV

March 12, 2007

Petar Maksimovic @ U Va from hep-ph/9406359

The four states of $\Sigma_{_{\rm b}}$

⇒ Two states very close together

• Predictions from a combinations of potential models, HQET, $1/N_{c}$ expansion, and lattice

Σ_b property	Expected value (MeV/c^2)
$m(\Sigma_b) - m(\Lambda_b^0)$	180 - 210
$m(\Sigma_b^*)$ - $m(\Sigma_b)$	10 - 40
$m(\Sigma_b^{\sim}) - m(\Sigma_b^+)$	5 - 7
$\Gamma(\Sigma_b), \Gamma(\Sigma_b^*)$	${\sim}8$, ${\sim}15$

- Enough as a rough guide for a blind search
- Expect: $\Sigma_{\rm b}^{\ \ (^*)}$ is massive enough to decay strongly to $\Lambda_{\rm b}\pi$, but just barely

March 12, 2007

Petar Maksimovic @ U Va

Analysis strategy

• Reconstruct Λ_{h} as:

$$egin{aligned} \Lambda_b^0 &
ightarrow \Lambda_c^+ \pi^- \ & \Lambda_c^+ &
ightarrow p K^- \pi^+ \end{aligned}$$

• Then combine $\Lambda_{_{\rm b}}$ with pions around it to form $\Sigma_{_{\rm b}}$, but treat $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$ separately:

$$egin{aligned} \Sigma_b^{(*)+} &
ightarrow \Lambda_b^0 \pi^+ \ \Sigma_b^{(*)-} &
ightarrow \Lambda_b^0 \pi^- \end{aligned}$$

March 12, 2007

- All species of b-hadrons produced!
- Tevatron's has been performing really well: here using ~ 1.1 fb⁻¹ of data

Reconstructing heavy hadrons

 Decays of hadrons with b and c quarks can be observed with a Silicon Detector

March 12, 2007

Petar Maks

- Those CDF can reconstruct are boosted sideways
- Use displacement in transverse plane

March 12, 2007

Mining b's from mountains of junk!

- Production rate of b-quarks is very large, but rate of (uninteresting) soft QCD is 1000x larger
- *b*-physics program lives and dies by the "trigger system"
 - very fast electronics
 - examines events in real time
 - decides to keep some events

(e.g. those with two displaced tracks)

 Silicon Vertex Trigger (SVT) – part of trigger system that finds displaced tracks and triggers on heavy hadrons

Reconstructing $\Lambda_{_{\rm b}}$ and $\Sigma_{_{\rm b}}$

- Proton and π from Λ_{b} usually fire Two (displaced) Track Trigger (based on SVT)
- $ar{B}^0
 ightarrow D^+ \pi^-$ has similar topology, and can be mistaken for $\Lambda_b
 ightarrow \Lambda_c^+ \pi^$ decay
- π from Σ_b comes from
 primary vertex, <u>along with</u> <u>tracks from hadronization</u>
 <u>and Underlying Event</u>

The largest Λ_{b} sample in the world

Composition of Λ_{b} signal window

- 86.4% of $\Lambda_{\rm b}$ (all decays)
- 9.3% of B mesons (all decays)
- 4.2% of fake Λ_{h} (combinatorial)

For Σ_{b} search, use these numbers to normalize backgrounds on Q distribution

Systematics: shuffle up to 200 events from $\Lambda_{_b}$ component to two backgrounds

Reconstructing Σ_{b}

Reconstructing Σ_{b}

- Use Λ_{b} signal region (3σ around Λ_{b} peak)
- Note: no cut on $p_{T}(\pi \text{ from } \Sigma_{b})$!

 $\Sigma_{_{\rm b}}$ boost direction in lab frame

- Only cosθ* makes substantial difference
- Optimized cuts

Backgrounds to worry about

Composition of backgrounds

Backgroun	d type	Source	Contribution			
Λ_{b} hadronization		PYTHIA	dominant			
Combinatorial		Upper Λ_{b} sideband m(Λ_{b}) \in [5.8, 7.0]	small			
B meson hadronization		<i>B</i> ^o data	small			
All B meson reflections	π_{Σ} from B hadronization		Dominant within B ^o			
	π_{Σ} from B decay (D*, D**)	Inclusive b-had MC	negligible			
	π_{Σ} from B**	B ^o PYTHIA	negligible			

Will be ignored from now on *

• All backgrounds modeled with a PDF of this form:

$$f(Q; \alpha, Q_{max}, \gamma) = \left(\frac{Q}{Q_{max}}\right)^{\alpha} e^{-\frac{\alpha}{\gamma}\left(\left(\frac{Q}{Q_{max}}\right)^{\gamma} - 1\right)}$$

(fits well a whole range of B meson fragmentation shapes)

• Fit separately every background component

(Systematics: try alternative shapes)

$\Lambda_{\rm b}$ combinatorial and *B* hadroniz. bkgs

hadronization in PYTHIA

- Need hadronization and Underlying Event background (shape, norm)
- For *B* mesons, PYTHIA works like a charm
 - cf. SSKT for Bs mixing
- No guarantees for baryons!
- Same as for B mesons, $p_{T}(\Lambda_{b})$ spectrum <u>must be</u> <u>reweighted</u>

Reweighting $\Lambda_{\rm b}$ hadronization

\mathbf{M}_{b} hadronization, after reweighting

$\Lambda_{\rm c}$ hadronization background

Bkgs before unblinding

- Λ_b hadronization
 dominates
- Small contribution from
 - B meson bkg
 - Combinatorial
- These backgrounds are <u>fixed</u> when we fit for $\Sigma_{\rm b}$ signals

Expected signal (before unblinding)

- Expect 4 peaks:
 - $\Sigma_{\rm b}^{-} \text{ and } \Sigma_{\rm b}^{*-} \text{ in } \Lambda_{\rm b} \pi^{-}$ $\Sigma_{\rm b}^{++} \text{ and } \Sigma_{\rm b}^{*+} \text{ in } \Lambda_{\rm b} \pi^{+}$
- Each peak:
 - Breit-Wigner (x) Resolution fun.
 - $\Gamma(\Sigma_{\rm b})$ predicted by HQET

March 12, 2007

 $\Gamma(\Sigma_{L})$ as a function of $M_{\Sigma_{b}}$

- $\Gamma(\Sigma_{b})$ predicted by HQET:
 - [hep-ph/9406359]

Modeling $\boldsymbol{\Sigma}_{_{\rm b}}$ signal peaks

The fit

- Backgrounds frozen in the fit
- Signal: 4 peaks, each
 - 2 Breit-Wigners (resolution has 2 Gaussians)
 - $\Gamma(\Sigma_{b})$ as a function of center of each peak
- $m(\Sigma_{b}^{*})-m(\Sigma_{b})$ common parameter

Fit results

Parameter	Value	Parabolic Error	MINOS Errors
$\Sigma_b^- Q ({ m MeV/c^2})$	55.9	0.951	(+0.973, -0.950)
Σ_{b}^{-} events	59	14.2	(+14.6, -13.7)
$\Sigma_b^+ Q ({ m MeV/c^2})$	48.5	1.97	(+1.98, -2.17)
Σ_b^+ events	32	12.1	(+12.5, -11.7)
Σ_{b}^{*-} events	69	17.6	(+18.0, -17.1)
$\Sigma_{b}^{\tilde{*}+}$ events	77	16.8	(+17.3, -16.3)
$\Sigma_b^{\widetilde{*}}$ - $\Sigma_b \; Q ({ m MeV/c^2})$	21.2	1.92	(+2.00, -1.94)
NLL	-24160.4	-	_

• Only significant correlation between $Q(\Sigma_b^{+})$ and $Q(\Sigma_b^{+}) - Q(\Sigma_b)$ (because Σ_b^{+} peak is weak...)

Systematics: procedure

- Already listed an array of "variations":
 - <u>change</u>: $\Lambda_{\rm b}$ signal region sample composition, det. resolution, natural width, functional form of background PDFs, extreme reweighting track $p_{\rm T}$ distribution, etc.
- For each variation:
 - generate 1000 Toy MC experiments with "changed" PDF
 - fit with "baseline" PDF
 - average differences between fit results is the systematic error

Systematics: results

All small for mass measurements

Parameter	Mass Scale	Λ_b^0 Comp.	Λ_b^0 Norm.	Λ_b^0 Shape	Reweight	Reso.	Σ_b width	Δ_*	Total
$\Sigma_b^- Q$	0.22	0.0	0.009	0.0	0.04	0.0	0.009		0.23
	-0.22	-0.03	-0.002	-0.011	-0.0004	-0.011	-0.005	0.0	-0.22
Σ_b^- events	0.0	0.7	2.2	0.3	7.4	0.3	3.4	0.0	95
	0.0	0.0	-2.2	0.0	0.0	0.0	-3.4	-0.08	-4 1
$\Sigma_b^+ Q$	0.19	0.03	0.013	0.013	0.0	0.0	0.01	0.0	0.19
5	-0.19	0.0	-0.013	0.0	-0.11	-0.014	-0.02	-0.11	-0.25
Σ_b^+ events	0.0	3.3	2.1	1.2	2.3	0.3	1.8	0.0	5.0
	0.0	0.0	-2.1	0.0	-1.8	0.0	-2.0	-0.004	-3.4
Σ_b^{*-} events	0.0	0.4	4.8	0.3	14.7	0.1	1.7	0.0	15.6
	0.0	0.0	-4.7	0.0	0.0	0.0	-1.7	-0.16	-5.0
Σ_{b}^{*+} events	0.0	7.3	4.8	2.8	4.6	0.2	0.8	0.16	10.3
5	0.0	0.0	-4.8	0.0	-2.9	0.0	-0.8	0.0	-5.7
Σ_b^* - $\Sigma_b Q$	0.10	0.05	0.14	0.04	0.32	0.02	0.07	0.0	0.38
	-0.10	0.0	-0.13	0.0	0.0	0.0	-0.07	-0.26	-0.32
$\Sigma_b^{*-} Q$	0.28	0.02	0.13	0.03	0.32	0.003	0.08	0.0	0.45
	-0.28	0.0	-0.13	0.0	0.0	0.0	-0.07	-0.184	-0.37
$\Sigma_b^{*+} Q$	0.32	0.09	0.12	0.05	0.17	0.001	0.05	0.0	0.40
	-0.32	0.0	-0.13	0.0	0.0	0.0	-0.06	-0.39	-0.52

• Track p_{T} reweighting largest for yields

March 12, 2007

Petar Maksimovic @ U Va

Number of events for each state:

•
$$N(\Sigma_b^-) = 59^{+15}_{-14}$$
 (stat) $^{+9}_{-4}$ (syst)

•
$$N(\Sigma_b^+) = 32^{+13}_{-12}$$
 (stat) $^{+5}_{-3}$ (syst)

•
$$N(\Sigma_b^{*-}) = 69^{+18}_{-17}$$
 (stat) $^{+16}_{-5}$ (syst)

•
$$N(\Sigma_b^{*+}) = 77^{+17}_{-16}$$
 (stat) $^{+10}_{-6}$ (syst)

Significance

- In total, a very significant signal
 - Naïve $S/\sqrt{S+B}$ gives ~ 9 σ
 - P-value calculation > 5σ: don't have enough Toy MC to probe the 9σ-level (extrapolation too imprecise)
- Strength of signal hypothesis (4 $\Sigma_{\rm b}$ peaks) best expressed by Likelihood Ratio (LR):

Likelihood Ratios

- Overall significance Hy
- Four or only two peaks?
- What if one peak is fake?

• "It is ~ 4.3x10¹⁸ more likely that this is a 4 peak $\Sigma_{\rm b}$ signal than that it's a background fluctuation!"

- Discovered four new particles!
- ~ 240 events in total

• And measured their masses:

- $m(\Sigma_b^-)$ $m(\Lambda_b^0)$ $m(\pi) = 55.9 \pm 1.0$ (stat) ± 0.2 (syst) MeV/c^2
- $m(\Sigma_b^+)$ $m(\Lambda_b^0)$ $m(\pi) = 48.5^{+2.0}_{-2.2}$ (stat) $^{+0.2}_{-0.3}$ (syst) MeV/c²
- $m(\Sigma_b^{*-}) m(\Sigma_b^{-}) = m(\Sigma_b^{*+}) m(\Sigma_b^{+}) = 21.2^{+2.0}_{-1.9}$ (stat) $^{+0.4}_{-0.3}$ (syst) MeV/c²

Baryons with Up, Down, Strange and Bottom Quarks and Highest Spin ($J = \frac{3}{2}$)

BACKUP SLIDES

Heavy baryon classification

• $\Sigma_{\rm b}^{+}$ is (uub), decaying to $\Lambda_{\rm b}^{-0} \pi^{+}$

• $\Sigma_{\rm b}^{-}$ is (ddb), decaying to $\Lambda_{\rm b}^{-0} \pi^{-}$

March 12, 2007

Petar Maksimovic @ U Va

Tools: Tevatron

- Recently, Tevatron has performed wonderfully
- By now over 2 fb⁻¹ delivered to CDF and D0
- This analysis uses
 1.1 fb⁻¹ delivered to
 CDF by March 2006

Hopes for the future

- Have about 500 events in $\ \Lambda_b o J/\psi \Lambda$
- Additional 1000 in $\Lambda_b \to \Lambda_c^+ \pi^-$, but in different triggers
- Potentially another 1k in other channels like $\Lambda_b \to \Lambda_c 3\pi$ On the shopping list:
- Measure $\Delta m(\Sigma_{h})$ in + and data separately
- Measure production rate relative to Λ_{h}