The Discovery of $\Sigma_{b}^{(*)}$

Petar Maksimovic, for the CDF collaboration

- Introduction: what is Σ_{b} ?
- CDF detector, trigger, Λ_{b} sample
- Blind optimization, background estimates
- Fitting for the $\Sigma_{b}{ }^{(*)}$ signals
- Systematics, significance

Why $\Sigma_{\mathrm{b}}{ }^{(*)}$?

- Most b-mesons found and their decays studied extensively
- Comparatively little is known about heavy baryons (but several c-baryons recently observed by B factories)
- Finding and studying b-baryons completes and checks the Standard Model
- Measuring masses, decay rates tests theoretical approaches (description different from B mesons!)
- Discovering new particles is cool! (And good practice for LHC too)

b-baryons with $B=1, C=0, J P=1 / 2^{+}, 3 / 2^{+}$

have	Notation	Quark content	$J^{\text {P }}$	SU(3)	($1, \mathrm{I}_{3}$)	S	B	Mass
	$\Lambda_{\text {b }}{ }^{0}$	b[ud]	1/2 ${ }^{+}$	3^{*}	$(0,0)$	0	1	$5619.7 \pm 1.2 \pm 1.2 \mathrm{MeV}$
	$\mathrm{E}_{\mathrm{b}}{ }^{0}$	b[su]	1/2+	3*	(1/2,1/2)	-1	1	5.80 GeV
	$\Xi_{b}{ }^{-}$	b[sd]	$1 / 2^{+}$	3*	(1/2,-1/2)	-1	1	5.80 GeV
	$\Sigma_{\text {b }}{ }^{+}$	buu	1/2+	6	$(1,1)$	0	1	5.82 GeV
searc for	$\Sigma_{\text {b }}{ }^{0}$	b\{ud\}	1/2+	6	$(1,0)$	0	1	5.82 GeV
		bdd	1/2 ${ }^{+}$	6	$(1,-1)$	0	1	5.82 GeV
	$\Xi_{\mathrm{b}}{ }^{0}$	b\{su\}	1/2+	6	(1/2,1/2)	-1	1	5.94 GeV
	$\Xi_{b}{ }^{0}$	b\{sd\}	1/2+	6	(1/2,-1/2)	-1	1	5.94 GeV
	$\Omega_{\mathrm{b}}{ }^{0}$	bss	$1 / 2^{+}$	6	$(0,0)$	-2	1	6.04 GeV
	$\Sigma_{\text {b }}{ }^{*+}$	buu	3/2 ${ }^{+}$	6	$(1,1)$	0	1	5.84 GeV
	$\Sigma_{\text {b }}{ }^{* 0}$	bud	3/2+	6	$(1,0)$	0	1	5.84 GeV
	$\Sigma_{\text {b }}{ }^{*}$	bdd	3/2+	6	$(1,-1)$	0	1	5.84 GeV
	$\Xi_{\text {b }}{ }^{* 0}$	bus	3/2+	6	(1/2,1/2)	-1	1	5.94 GeV
	$\Xi_{\mathrm{b}}{ }^{*-}$	bds	3/2+	6	(1/2,-1/2)	-1	1	5.94 GeV
	$\Omega_{\mathrm{b}}{ }^{*-}$	bss	3/2+	6	$(0,0)$	-2	1	6.06 GeV

March 12, 2007
Petar Maksimovic @ U Va from hep-ph/9406359

The four states of Σ_{b}

- In HQET picture: b-quark is a static source of color field
- Light diquark pair decoupled if $m_{b} \rightarrow \infty$

$$
\boldsymbol{\Sigma}_{\boldsymbol{b}} \quad b\{q q\}, q=u, d ; \quad J^{p}=\mathrm{S}_{\mathrm{Q}}+\stackrel{\nearrow}{\mathrm{s}_{q q}}=3 / 2^{+}\left(\Sigma_{b}^{*}\right)
$$

- For finite $\boldsymbol{m}_{b^{\prime}}$, the $3 / 2^{+}\left(\Sigma_{b}{ }^{*}\right)$ and $1 / 2^{+}$ $\left(\Sigma_{b}\right)$ levels split due to spin-spin interaction with the b-quark
\Rightarrow Two states very close together

Theoretical expectations

- Predictions from a combinations of potential models, HQET, $1 / N_{c}$ expansion, and lattice

Σ_{b} property	Expected value $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$
$\mathrm{m}\left(\Sigma_{b}\right)-\mathrm{m}\left(\Lambda_{b}^{0}\right)$	$180-210$
$\mathrm{~m}\left(\Sigma_{b}^{*}\right)-\mathrm{m}\left(\Sigma_{b}\right)$	$10-40$
$\mathrm{~m}\left(\Sigma_{b}^{-}\right)-\mathrm{m}\left(\Sigma_{b}^{+}\right)$	$5-7$
$\Gamma\left(\Sigma_{b}\right), \Gamma\left(\Sigma_{b}^{*}\right)$	$\sim 8, \sim 15$

- Enough as a rough guide for a blind search
- Expect: $\sum_{b}{ }^{(*)}$ is massive enough to decay strongly to $\Lambda_{\mathrm{b}} \pi$, but just barely

Analysis strategy

- Reconstruct Λ_{b} as:

$$
\begin{aligned}
\Lambda_{b}^{0} \rightarrow & \Lambda_{c}^{+} \pi^{-} \\
& \Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}
\end{aligned}
$$

- Then combine Λ_{b} with pions around it to form Σ_{b}, but treat π^{+}and π^{-}separately:

$$
\begin{gathered}
\Sigma_{b}^{(*)+} \rightarrow \Lambda_{b}^{0} \pi^{+} \\
\Sigma_{b}^{(*)-} \rightarrow \Lambda_{b}^{0} \pi^{-}
\end{gathered}
$$

Tevatron + CDF = b-hadron factory

- All species of b-hadrons produced!
- Tevatron's has been performing really well: here using $\sim 1.1 \mathrm{fb}^{-1}$ of data
- CDF has excellent tracking:
- d_{0} resolution (needed for B physics)
- p_{T} resolution
(needed to measure masses)

ent

 Muon Detectors
Reconstructing heavy hadrons

- Those CDF can reconstruct are boosted sideways
- Use displacement in transverse plane
- Decays of hadrons with b and c quarks can be observed with a Silicon Detector

Mining b's from mountains of junk!

- Production rate of b-quarks is very large, but rate of (uninteresting) soft QCD is 1000x larger
- b-physics program lives and dies by the "trigger system"
- very fast electronics
- examines events in real time
- decides to keep some events (e.g. those with two displaced tracks)

- Silicon Vertex Trigger (SVT) - part of trigger system that finds displaced tracks and triggers on heavy hadrons

Reconstructing Λ_{b} and Σ_{b}

- Proton and π from Λ_{b} usually fire Two (displaced) Track Trigger (based on SVT)
- $\bar{B}^{0} \rightarrow D^{+} \pi^{-}$has similar topology, and can be mistaken for $\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}$ decay
- π from Σ_{b} comes from primary vertex, along with tracks from hadronization and Underlying Event

The largest Λ_{b} sample in the world

Composition of Λ_{b} signal window

- 86.4% of Λ_{b} (all decays)
- 9.3% of B mesons (all decays)
- 4.2% of fake Λ_{b} (combinatorial)

For Σ_{b} search, use these numbers to normalize backgrounds on Q distribution

Systematics: shuffle up to 200 events from Λ_{b} component to two backgrounds

Reconstructing Σ_{b}

- Use Λ_{b} candidates from " Λ_{b} signal region"
- Combine those with prompt tracks to form Σ_{b} candidates
" Λ_{b} signal region"
" Λ_{b} upper sideband"
(source of fake Λ_{b} background)

Reconstructing Σ_{b}

- Split into two sub-samples:
$\Lambda_{b} \pi^{-}$: look for $\Sigma_{b}{ }^{-}$and $\Sigma_{b}{ }^{*-}$
$\Lambda_{b} \pi^{+}$: look for $\Sigma_{b}{ }^{+}$and $\Sigma_{b}{ }^{*+}$
- Remove effect of Λ_{b} resolution by looking at
$Q \equiv m\left(\Lambda_{b} \pi\right)-m\left(\Lambda_{b}\right)-m_{\pi}$

Σ_{b} signal $\quad \Sigma_{\mathrm{b}}$ sideregion bands

Σ_{b} optimization

- Use Λ_{b} signal region (3 σ around Λ_{b} peak)
- Note: no cut on $p_{\mathrm{T}}\left(\pi\right.$ from $\left.\Sigma_{\mathrm{b}}\right)$!

Σ_{b} boost direction in lab frame
- Only $\cos \theta^{*}$ makes substantial difference
- Optimized cuts

Variable	Cut value
$p_{\mathrm{T}}\left(\Sigma_{b}\right)$	$>9.5 \mathrm{GeV} / \mathrm{c}$
$\left\|d_{0} / \sigma_{d_{0}}\right\|$	<3.0
$\cos \theta^{*}$	>-0.35

Σ_{b} optimization: $\mathrm{N}-1$ scan for $\cos \theta^{*}$

Backgrounds to worry about

Composition of backgrounds

Background type		Source	Contribution
Λ_{b} hadronization		PYTHIA	dominant
Combinatorial		Upper Λ_{b} sideband $\mathrm{m}\left(\Lambda_{\mathrm{b}}\right) \in[5.8,7.0]$	small
B meson hadronization		B^{0} data	small
All B meson reflections	π_{Σ} from B hadronization	B^{0} PYTHIA	Dominant within B^{0}
	π_{Σ} from B decay ($\left.D^{*}, D^{* *}\right)$	Inclusive b-had	negligible
	π_{Σ} from $B^{* *}$	B^{0} PYTHIA	negligible

- All backgrounds modeled with a PDF of this form:

(fits well a whole range of B meson fragmentation shapes)
- Fit separately every background component (Systematics: try alternative shapes)

combinatorial and B hadroniz. bkgs

「OFII Preliminary

Λ_{b} hadronization in PYTHIA

Λ_{b} hadronization: PYTHIA vs data

CDFII Preliminary

CDFII Preliminary

Reweighting Λ_{b} hadronization

Λ_{b} hadronization, after reweighting

CDFII Preliminary

CDFII Preliminary

. . hadronization background

- Effectively, used PYTHIA to interpolate
- Shape is smooth in Σ_{b} signal region!

Systematics: use extremes of the track $\boldsymbol{p}_{\mathrm{T}}$ spectrum to reweight

CDF II Preliminary, $L=1.1 \mathrm{fb}^{-1}$

- These backgrounds are fixed when we fit for Σ_{b} signals

$$
\mathrm{Q}=\mathrm{m}\left(\Lambda_{\mathrm{b}}^{0} \pi\right)-\mathrm{m}\left(\Lambda_{\mathrm{b}}^{0}\right)-\mathrm{m}_{\pi} \quad\left(\mathrm{GeV} / \mathrm{c}^{2}\right)
$$

Expected signal (before unblinding)

- Expect 4 peaks:

$$
\begin{aligned}
& -\Sigma_{b}^{-} \text {and } \Sigma_{b}{ }^{*-} \text { in } \Lambda_{b} \pi^{-} \\
& -\Sigma_{b}^{+} \text {and } \Sigma_{b}^{*+} \text { in } \Lambda_{b} \pi^{+}
\end{aligned}
$$

- Each peak:
- Breit-Wigner (x) Resolution fun.
- $\Gamma\left(\Sigma_{\mathrm{b}}\right)$ predicted by HQET

Detector resolution of measuring Q

- Generated $\Sigma_{\text {b }}$ PYTHIA MC
- Σ_{b} states with no natural width
- Checked MC in Σ_{c} and D^{*}

Disagreement of 15-20\% seen in some cases, use as syst.

$\Gamma\left(\Sigma_{\mathrm{b}}\right)$ as a function of $M_{\Sigma b}$

- $\Gamma\left(\Sigma_{b}\right)$ predicted by HQET: [hep-ph/9406359] $\Gamma[\mathrm{MeV} / \mathrm{c}]$

$$
\begin{aligned}
& \Gamma_{\Sigma_{q} \rightarrow \Lambda_{q} \pi}=\frac{1}{6 \pi} \frac{M_{\Lambda_{q}}}{M_{\Sigma_{q}}}\left|f_{p}\right|^{2}\left|\vec{p}_{\pi}\right|^{3} \\
& f_{p} \equiv g_{A} / f_{\pi} ; g_{A}=0.75 \pm 0.05
\end{aligned}
$$

From fit to $\Sigma_{c}^{(*)++}$ states (use as systematics)
$\Gamma\left(\Sigma_{c}^{(\gamma)++}\right)$ in an excellent agreement with PDG

Modeling Σ_{b} signal peaks

- Natural width from HQET formula
- Dominates over detector resolution!
- Breit-Wigner peaks get wider as $\mathrm{m}\left(\Sigma_{\mathrm{b}}\right)$ goes up

CDF II Preliminary, $L=1.1 \mathrm{fb}^{-1}$

The fit

- Backgrounds frozen in the fit
- Signal: 4 peaks, each
- 2 Breit-Wigners (resolution has 2 Gaussians)
- $\Gamma\left(\Sigma_{b}\right)$ as a function of center of each peak
- $m\left(\Sigma_{b}^{*}\right)$ - $m\left(\Sigma_{b}\right)$ common parameter

Fit results

Parameter	Value	Parabolic Error	MINOS Errors
$\Sigma_{b}^{-} Q\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	55.9	0.951	$(+0.973,-0.950)$
Σ_{b}^{-}events	59	14.2	$(+14.6,-13.7)$
$\Sigma_{b}^{+} Q\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	48.5	1.97	$(+1.98,-2.17)$
Σ_{b}^{+}events	32	12.1	$(+12.5,-11.7)$
Σ_{b}^{*-} events	69	17.6	$(+18.0,-17.1)$
Σ_{b}^{*+} events	77	16.8	$(+17.3,-16.3)$
$\Sigma_{b}^{*}-\Sigma_{b} Q\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	21.2	1.92	$(+2.00,-1.94)$
NLL	-24160.4	-	-

- Only significant correlation between $\mathrm{Q}\left(\Sigma_{\mathrm{b}}^{+}\right)$and $\mathrm{Q}\left(\Sigma_{\mathrm{b}}{ }^{*}\right)-\mathrm{Q}\left(\Sigma_{\mathrm{b}}\right) \quad$ (because $\Sigma_{\mathrm{b}}{ }^{+}$peak is weak...)

Systematics: procedure

- Already listed an array of "variations":
- change: Λ_{b} signal region sample composition, det. resolution, natural width, functional form of background PDFs, extreme reweighting track p_{T} distribution, etc.
- For each variation:
- generate 1000 Toy MC experiments with "changed" PDF
- fit with "baseline" PDF
- average differences between fit results is the systematic error

Systematics: results

- All small for mass measurements

Parameter	Mass Scale	Λ_{b}^{0} Comp.	Λ_{b}^{0} Norm.	Λ_{b}^{0} Shape	Reweight	Reso.	Σ_{b} vwidth	Δ_{*}	
$\Sigma_{b}^{-} Q$	0.22	0.0	0.009	0.0	0.04	0.0	0.009	06	
	-0.22	-0.03	-0.002	-0.011	-0.0004	-0.011	-0.005	0.0	-0.22
Σ_{b}^{-}events	0.0	0.7	2.2	0.3	7.4	0.3	3.4	0.0	0.5
	0.0	0.0	-2.2	0.0	0.0	0.0	-3.4	-0.08	-41
$\Sigma_{b}^{+} Q$	0.19	0.03	0.013	0.013	0.0	0.0	0.01	0.0	0.19
	-0.19	0.0	-0.013	0.0	-011	-0.014	-0.02	-0.11	-0.25
Σ_{b}^{+}events	0.0	3.3	2.1	1.2	2.3	0.3	1.8	0.0	5.0
	0.0	0.0	-2.1	0.0	-1.8	0.0	-2.0	-0.004	-3.4
Σ_{b}^{*-} events	0.0	0.4	4.8	0.3	14.7	0.1	1.7	0.0	15.6
	0.0	0.0	-4.7	0.0	0.0	0.0	-1.7	-0.16	-5.0
Σ_{b}^{*+} events	0.0	7.3	4.8	2.8	4.6	0.2	0.8	0.16	10.3
	0.0	0.0	-4.8	0.0	-2.9	0.0	-0.8	0.0	-5.7
$\Sigma_{b}^{*-\Sigma_{b} Q}$	0.10	0.05	0.14	0.04	0.32	0.02	0.07	0.0	0.38
	-0.10	0.0	-0.13	0.0	0.0	0.0	-0.07	-0.26	-0.32
$\Sigma_{b}^{*-} Q$	0.28	0.02	0.13	0.03	0.32	0.003	0.08	0.0	0.45
	-0.28	0.0	-0.13	0.0	0.0	0.0	-0.07	-0.184	-0.37
$\Sigma_{b}^{*+} Q$	0.32	0.09	0.12	0.05	0.17	0.001	0.05	0.0	0.40
	-0.32	0.0	-0.13	0.0	0.0	0.0	-0.06	-0.39	

- Track p_{T} reweighting largest for yields

Yields (including systematics)

Number of events for each state:

- $\mathrm{N}\left(\Sigma_{b}^{-}\right)=59_{-14}^{+15}$ (stat) ${ }_{-4}^{+9}$ (syst)
- $\mathrm{N}\left(\Sigma_{b}^{+}\right)=32_{-12}^{+13}$ (stat) ${ }_{-3}^{+5}$ (syst)
- $\mathrm{N}\left(\Sigma_{b}^{*-}\right)=69_{-17}^{+18}$ (stat) ${ }_{-5}^{+16}$ (syst)
- $\mathrm{N}\left(\Sigma_{b}^{*+}\right)=77_{-16}^{+17}$ (stat) ${ }_{-6}^{+10}$ (syst)

Significance

- In total, a very significant signal
- Naïve $S / \sqrt{S+B}$ gives ~9б
- P-value calculation $>5 \sigma$: don't have enough Toy MC to probe the 9σ-level (extrapolation too imprecise)
- Strength of signal hypothesis ($4 \Sigma_{\mathrm{b}}$ peaks) best expressed by Likelihood Ratio (LR):

$$
L R \equiv \frac{L_{\text {no peak fit }}}{L_{4 \text { peak fit }}}
$$

Evaluate LR for multiple fit models and pick the worst case scenario!

Likelihood Ratios

- Overall significance

Hypothesis	$L R$	$\sqrt{2 \cdot \ln (L R)}$
Null	4.3×10^{18}	9.3
Two Σ_{b} Statas	1.3×10^{6}	5.3
No Σ_{b}^{-}Si nal	1.8×10^{4}	4.4
No Σ_{b} Signal	6.0	1.9
No Σ_{b}^{*} Signal	9.0×10^{3}	4.3
No Σ_{b}^{*+} Signal	4.4×10^{4}	4.6

- "It is $\sim 4.3 \times 10^{18}$ more likely that this is a 4 peak Σ_{b} signal than that it's a background fluctuation!"

Summary

- Discovered four new particles!
- ~ 240 events in total
- And measured their masses:

- $\mathrm{m}\left(\Sigma_{b}^{-}\right)-\mathrm{m}\left(\Lambda_{b}^{0}\right)-\mathrm{m}(\pi)=55.9 \pm 1.0$ (stat) ± 0.2 (syst) $\mathrm{MeV} / \mathrm{c}^{2}$
- $\mathrm{m}\left(\Sigma_{b}^{+}\right)-\mathrm{m}\left(\Lambda_{b}^{0}\right)-\mathrm{m}(\pi)=48.5_{-2.2}^{+2.0}$ (stat) ${ }_{-0.3}^{+0.2}$ (syst) $\mathrm{MeV} / \mathrm{c}^{2}$
- $\mathrm{m}\left(\Sigma_{b}^{*-}\right)-\mathrm{m}\left(\Sigma_{b}^{-}\right)=\mathrm{m}\left(\Sigma_{b}^{*+}\right)-\mathrm{m}\left(\Sigma_{b}^{+}\right)=21.2_{-1.9}^{+2.0}$ (stat) ${ }_{-0.3}^{+0.4}$ (syst) $\mathrm{MeV} / \mathrm{c}^{2}$

Baryons with Up, Down, Strange and Bottom Quarks and Highest Spin (J = 3/2)

Three Bottom Quarks not yet discovered

Two Bottom Quarks not yet discovered

One Bottom Quark not all discovered

No Bottom Quark all discovered

BACKUP SLIDES

Heavy baryon classification

- $\Sigma_{b}{ }^{+}$is (uub), decaying to $\Lambda_{b}^{0} \pi^{+}$
- Σ_{b}^{-}is (ddb), decaying to $\Lambda_{\mathrm{b}}^{0} \pi^{-}$

Tools: Tevatron

Hopes for the future

- Have about 500 events in $\boldsymbol{\Lambda}_{b} \rightarrow \boldsymbol{J} / \psi \boldsymbol{\Lambda}$
- Additional 1000 in $\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}$, but in different triggers
- Potentially another 1 k in other channels like $\Lambda_{b} \rightarrow \Lambda_{c} 3 \pi$

On the shopping list:

- Measure $\Delta \mathrm{m}\left(\Sigma_{\mathrm{b}}\right)$ in + and - data separately
- Measure production rate relative to Λ_{b}

