Hamiltonian approach to Yang-Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Aleksandr Yelnikov Virginia Tech based on hep-th/0512200 hep-th/0604060

with Rob Leigh and Djordje Minic

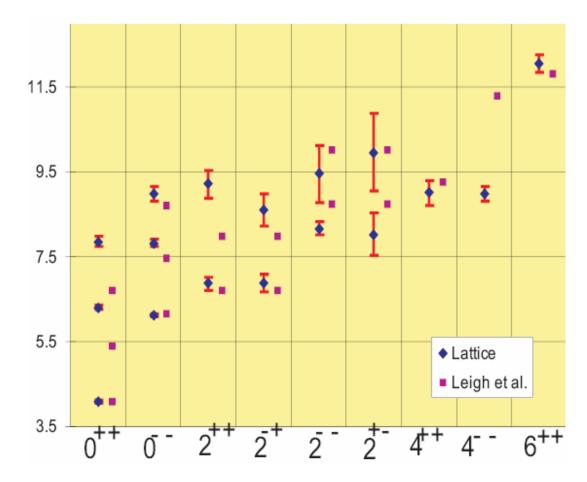
Preliminaries and Summary

- We work in the Hamiltonian formalism
- The new ingredient is provided by the computation of the new nontrivial form of the ground state wave-functional. This wavefunctional seems to correctly interpolate between asymptotically free regime and low energy confining physics
- With this vacuum state it is possible to (quantitatively) demonstrate important observable features of the theory:
 - Signals of confinement: area law, string tension, mass gap
 - Compute the spectrum of glueball states
- Very good agreement with available lattice data:
 - Large-N string tension is agrees to 1% with lattice data (Bringoltz and Teper, hep-lat/0611286)

$$\sqrt{\sigma} ~\simeq~ \sqrt{\frac{\pi}{2}} \, m ~\approx~ 1.2533 \, m ~~ \sqrt{\sigma}_{lattice} ~\approx (1.2409 \pm 0.0013) \, m$$

Summary of glueball mass spectrum

• All masses are in units of string tension (courtesy of Barak Bringoltz)



Motivation (Why is $YM_{(2+1)}$ interesting?)

$YM_{(1+1)}$	YM ₍₂₊₁₎	YM ₍₃₊₁₎
No propagating degrees of freedom; exactly solvable ('t Hooft '74)	Propagating degrees of freedom, nontrivial. Exactly solvable? (Polyakov '80)	Highly nontrivial; difficult

- YM₍₂₊₁₎ is superrenormalizable
- Coupling constant is dimensionful:

 $\left[g_{YM}^2\right] = \text{mass}$

It is convenient to introduce new massive parameter

$$m = \frac{g_{YM}^2 N}{2\pi} \sim \text{'t Hooft coupling'}$$

Motivation (cont'd)

- Feynman (1981) argued that (2+1)YM should confine, with mass gap generated because configuration space is compact
- Lattice compact QED in (2+1)D (Polyakov '75) explicit demonstration of confinement, condensation of magnetic monopoles
- Gauge invariant variables:
 - Nonlocal Wilson loops
 - Equation of motion ←→ loop equation (Makeenko & Migdal) ←→ hard to proceed
 - Local many proposals (Bars, Halpern, Freedman&Khuri, etc)
 - Karabali, Kim and Nair formalism (hep-th/9705087, hep-th/9804132, hep-th/0007188)

Hamiltonian Analysis

- Inner product
 - Matrix variables, calculation of gauge-invariant volume
- Hamiltonian ${\cal H}$ in the new wariables
- Solve Schrodinger equation $\mathcal{H} \Psi = E \Psi$

$YM_{(2+1)}$ in the Hamiltonian Formalism

• We consider (2+1)D SU(N) pure YM theory with the Hamiltonian

$$\mathcal{H}_{YM} \equiv T + V = \int \operatorname{Tr} \left(g_{YM}^2 E_i^2 + \frac{1}{g_{YM}^2} B^2 \right)$$

- We choose the temporal gauge $A_0 = 0$
- E_{i}^{a} is the momentum conjugate to A_{i}^{a} ; i=1,2, a=1,2,...,N²-1 • Quantize: $E_{i}^{a} \rightarrow -i \frac{\delta}{\delta A_{i}^{a}}$
- Time-independent gauge transformations preserve A₀=0 gauge condition and gauge fields A_i transform as

$$A_i \rightarrow gAg^{-1} - \partial_i gg^{-1}, \qquad g \in SU(N)$$

 Gauss' law implies that observables and physical states are gauge invariant

Matrix parameterization

• Choose complex coordinates $z = x_1 - ix_2$, $\bar{z} = x_1 + ix_2$

$$A = A_z = \frac{1}{2}(A_1 + iA_2), \quad \bar{A} = A_{\bar{z}} = \frac{1}{2}(A_1 - iA_2),$$

• Parameterize A, \bar{A} as

$$A = -\partial M M^{-1}, \quad \bar{A} = M^{\dagger - 1} \bar{\partial} M^{\dagger}$$

This parameterization is well-known in 2-dimensional YM context, gauged WZW models, etc.

- Here M is a complex invertible unimodular matrix $A \text{ traceless} \leftrightarrow \det M = 1$ $M \in SL(N, \mathbb{C})$
- The basic advantage of this parameterization is behavior under gauge transformations

$$M \to M^g = g \ M$$

Matrix parameterization (cont'd)

Gauge invariant variables may be written simply as

$$H = M^{\dagger}M \qquad \qquad H - \text{Hermitian}$$

Note that H is a local field. Roughly, M may be thought of as analogous to an open Wilson line, and $H\,$ as a closed loop

The Wilson loop evaluates to

$$\Phi(C) = TrPe^{i\oint_C \left(Adz + \bar{A}d\bar{z}\right)} = TrPe^{-i\oint_C dz \ \partial HH^{-1}}$$
$$J = \frac{c_A}{\pi} \partial HH^{-1}$$

There is an ambiguity in parameterization

$$\begin{split} M(z,\bar{z}) &\mapsto M(z,\bar{z})h^{\dagger}(\bar{z}) \qquad M^{\dagger}(z,\bar{z}) \mapsto h(z)M^{\dagger}(z,\bar{z}) \\ H(z,\bar{z}) &\mapsto h(z)H(z,\bar{z})h^{\dagger}(\bar{z}) \end{split}$$

One must ensure that all results are holomorphic invariant

Volume element

The inner product of states in position representation

 $\langle 1|2\rangle = \int [dAd\bar{A}] \Psi_1^* \Psi_2$

Change of variables gives

$$[dAd\bar{A}] = \det(-D\bar{D}) \qquad \underbrace{d\mu(M, M^{\dagger})}_{H_{\text{const}}}$$

Haar measure for $SL(N, \mathbb{C})$

• We can split the $SL(N, \mathbf{C})$ volume element as

$$d\mu(M, M^{\dagger}) = \underbrace{d\mu(H)}_{\text{Haar for SL}(N, \mathbb{C})/\text{SU}(N)} \underbrace{d\mu(U)}_{\text{Haar for SU}(N)}$$

Also the computation of $det(-\overline{D}D)$ presents no difficulties

$$\det(-\bar{D}D) \sim e^{2c_A S_{WZW}(H)}$$

 $S_{WZW}[H] = \frac{1}{2\pi} \int d^2 z \operatorname{Tr} \left(\partial H \bar{\partial} H^{-1} \right) + \frac{i}{12\pi} \int d^3 x \ \epsilon^{\mu\nu\lambda} \operatorname{Tr} \left(H^{-1} \partial_{\mu} H H^{-1} \partial_{\nu} H H^{-1} \partial_{\lambda} H \right)$

Volume element (cont'd)

 Finally the inner product of states can be written as overlap integral with nontrivial measure

$$\langle 1|2 \rangle = \int d\mu(H) \ e^{2c_A S_{WZW}(H)} \ \Psi_1^* \Psi_2$$

- Comments:
 - Matrix elements in YM(2+1) = correlators of a hermitian WZW model;
 - Volume of configuration space is finite!

 $\int d\mu(H) \, e^{2c_A S_W Z W(H)} \, < \, \infty$

this means, in particular, that $\Psi \equiv 1$ is normalizable

 Note that nontrivial measure factor disappears for U(1) theory. This is the basic difference in configuration space geometry for Abelian and non-Abelian theories

Intuitive argument for mass gap

The Hamiltonian has the form

$$\mathcal{H} = \frac{1}{2} \int \left[e^2 E^2 + B^2 / e^2 \right]$$

 $[E, B] \sim p$ (in momentum space) $\implies \Delta E \Delta B \sim p$, or $\Delta E \sim p/\Delta B$

$$\mathcal{E} = \langle \mathcal{H} \rangle \approx \frac{1}{2} \int \left[e^2 \frac{p^2}{(\Delta B)^2} + \frac{(\Delta B)^2}{e^2} \right]$$

- Minimize with respect to $\Delta B \implies (\Delta B)^2 \sim p \implies \mathcal{E} \sim p$. This is the photon.
- For non-Abelian theory

$$\langle \mathcal{H} \rangle = \int d\mu(H) \underbrace{e^{2c_A S_{WZW}(H)}}_{e^{-\frac{c_A}{2\pi} \int B \frac{1}{p^2}B + \dots}} \frac{1}{2} \left[e^2 \frac{p^2}{(\Delta B)^2} + \frac{(\Delta B)^2}{e^2} \right]$$

Gaussian $\implies (\Delta B)^2 \sim \frac{\pi p^2}{c_A} \implies \mathcal{E} \sim m + \frac{p^2}{2m} \qquad m = \frac{c_A e^2}{2\pi} - \text{mass gap}$

The Hamiltonian

It is natural to introduce the WZW current

J

J is a connection for

iance:

The YM Hamiltonian can then be rewritten in terms of J

$$\mathcal{H}_{KN}[J] = m \underbrace{\left(\int_{x} J^{a}(x) \frac{\delta}{\delta J^{a}(x)} + \int_{x,y} \Omega_{ab}(x,y) \frac{\delta}{\delta J^{a}(x)} \frac{\delta}{\delta J^{b}(y)}\right) + \underbrace{\frac{\pi}{mc_{A}} \int_{x} \bar{\partial} J^{a} \bar{\partial} J^{a}}_{V}}_{T}$$

This has the collective field form (Jevicki & Sakita '81) and

$$\Omega_{ab}(x,y) = \frac{c_A}{\pi^2} \frac{\delta_{ab}}{(x-y)^2} - \frac{i}{\pi} \frac{f_{abc} J^c(x)}{(x-y)}$$

This can be rechecked by self-adjointness of $\mathcal{H}_{KN}(J)$

The Hamiltonian (cont'd)

- Ignore V for the moment. Then we can take $\Psi_0\equiv 1~$ as a ground state for ~T . This is OK since $~T~\Psi_0\equiv 0~$ and since $~\Psi_0\equiv 1~$ is normalizable
- As a first excited state (of T) we may try $\,\Psi_1\,\,=\,\,J^a$

$$T J^a = m J^a$$

Note, however, that this is not holomorphically invariant

• Therefore we may try
$$\Psi_2 = : \bar{\partial} J \bar{\partial} J : \sim V$$

$$T : \bar{\partial}J\bar{\partial}J := 2m : \bar{\partial}J\bar{\partial}J :$$

- Higher excitations of T can (in principle) be constructed using higher (mass) dimension operators
 - Assume that $T: \bar{\partial}J(\Delta)^n \bar{\partial}J: = (2+n)m: \bar{\partial}J(\Delta)^n \bar{\partial}J: + \dots$
 - Here $\Delta = \frac{\bar{\partial}D + D\bar{\partial}}{2}$ covariant Laplacian

Vacuum wave functional

Include V perturbatively, $\Psi_{VAC} = e^P$

$$P = -\frac{\pi}{m^2 c_A} \int :\bar{\partial}J\bar{\partial}J: -\frac{2}{3}\left(\frac{\pi}{m^2 c_A}\right)^2 \int :\bar{\partial}J(\Delta)\bar{\partial}J: +\mathcal{O}\left(\frac{1}{m^6}\right)$$

- In principle vacuum state can be constructed order-by-order in strong coupling expansion
- We want to sum up all terms quadratic in J(B)

 $\bar{\partial}J\bar{\partial}J \sim B^2$ $\bar{\partial}J(\Delta)^n\bar{\partial}J \sim B(D^2)^n B$

Vacuum Wave-Functional

We want to solve Schrödinger equation to quadratic order in J^a, therefore we take the most general gauge invariant ansatz which contains all terms quadratic in J^a

$$\Psi_0 = \exp\left(-\frac{\pi}{2c_A m^2} \int tr \ \bar{\partial}JK(L)\bar{\partial}J + \dots\right). \qquad L = \Delta/m^2$$

- The (quasi)-Gaussian part of the vacuum wave functional contains a (non-trivial) kernel K(L) which will be determined by the solution of Schrödinger equation
 - Thinking of K(L) as Taylor-expandable function shows that introducing K(L) is just a convenient way to parameterize summed up perturbation series

$$K\left(\frac{\Delta}{m^2}\right) = \sum c_n \left(\frac{\Delta}{m^2}\right)^n$$

$$tr(\bar{\partial}JK(L)\bar{\partial}J) = c_1 tr(\bar{\partial}J\bar{\partial}J) + c_2 \frac{tr(\bar{\partial}J\Delta\bar{\partial}J)}{m^2} + c_3 \frac{tr(\bar{\partial}J\Delta^2\bar{\partial}J)}{m^4} + \dots$$

Vacuum Wave-Functional (cont'd)

$$\Psi_0 = \exp\left(-\frac{1}{2g_{YM}^2m}\int tr\,B\,K\left(\frac{D^2}{4m^2}\right)B + \dots\right)$$

Vacuum Wave-Functional (cont'd.)

- Asymptotic behavior of the vacuum state:
 - In the UV we expect to recover the standard perturbative result

$$\Psi_0^{UV} \mapsto \exp\left(-\frac{1}{2g_{YM}^2}\int B^a \frac{1}{|p|} B^a\right)$$

$$K \to \frac{2m}{p} \quad \text{as} \quad p \to \infty$$

• In the IR we expect

$$\Psi_0^{IR} \mapsto \exp\left(-\frac{1}{2g_{YM}^2m}\int \operatorname{Tr} B^2\right)$$

$$K \rightarrow 1$$
 as $p \rightarrow 0$

Schrödinger Equation

The Schrödinger equation takes the form

$$\mathcal{H}_{YM}\Psi_0 = E_0\Psi_0 = \left[E_0 + \int tr \, B(\mathcal{R})B + \dots\right]\Psi_0$$

By careful computation we find the differential equation for the kernel K(L)

$$\mathcal{R} = -K(L) - \frac{L}{2} \frac{d}{dL} [K(L)] + LK(L)^2 + 1 = 0$$

This may be compared to U(1) theory without matter in which case we obtain an algebraic equation describing free photons

$$LK^2(L) + 1 = 0$$

$$K(L) = \pm \frac{1}{\sqrt{-L}} = \frac{2m}{p}$$

Vacuum Solution

 The differential equation for kernel is of Riccati type and, by a series of redefinitions, it can be recast as a Bessel equation.

$$K(L) = \frac{1}{\sqrt{L}} \frac{CJ_2(4\sqrt{L}) + Y_2(4\sqrt{L})}{CJ_1(4\sqrt{L}) + Y_1(4\sqrt{L})}$$

- The only normalizable wave functional is obtained for $C \rightarrow \infty$, which is also the only case that has both the correct UV behavior appropriate to asymptotic freedom as well as the correct IR behavior appropriate to confinement and mass gap!
- This solution is of the form

$$K(L) = \frac{1}{\sqrt{L}} \frac{J_2(4\sqrt{L})}{J_1(4\sqrt{L})}$$

String tension

 The expectation value of the large spatial Wilson loop can be calculated using IR asymptotic form of vacuum state

$$\langle W_R(\mathcal{C}) = \int [dA] W_R(\mathcal{C}) \exp\left(-\frac{1}{g_{YM}^2 m} \int Tr B^2\right)$$

- This is equivalent to 2d Euclidean YM theory with 2d coupling $g_{2D}^2 \equiv mg_{YM}^2$
- This means, in particular, that large spatial Wilson loops obey area law with string tension (Karabali, Kim and Nair, hep-th/9804132)

$$\sigma_R = g_{YM}^4 \frac{C_A C_R}{4\pi}$$
 C_R – Casimir for representation R

 Agrees to 1% with large-N lattice string tension (Bringoltz and Teper, hep-lat/0611286)

$$\sqrt{\sigma} \simeq \sqrt{\frac{\pi}{2}} m \approx 1.2533 \, m \qquad \sqrt{\sigma}_{lattice} \approx (1.2409 \pm 0.0013) \, m$$

Inverse Kernel

- Elementary $\langle B^a(x) B^b(y) \rangle$ correlator is

$$\langle B^a(x) B^b(y) \rangle \sim \delta^{ab} K^{-1}(|x-y|)$$

• Using the standard Bessel function identities we may expand where the $\gamma_{2,n}$ are the ordered zeros of $J_2(u)$.

$$\frac{J_1(u)}{J_2(u)} = \frac{4}{u} + 2u \sum_{n=1}^{\infty} \frac{1}{u^2 - \gamma_{2,n}^2}$$

• Inverse kernel is thus $(L \simeq p^2/4m^2)$

$$K^{-1}(p) = 1 + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\vec{p}^2}{\vec{p}^2 + M_n^2} \qquad \qquad M_n = \frac{\gamma_{2,n} m}{2}$$

Inverse Kernel (cont'd.)

M_n can be interpreted as constituents out of which glueball masses are constructed

 $M_1 = 2.568m$ $M_2 = 4.209m$ $M_3 = 5.810m$

At asymptotically large spatial separations $|x - y| \to \infty$ inverse kernel takes the form

$$K^{-1}(|x-y|) \approx -\frac{1}{4\sqrt{2\pi|x-y|}} \sum_{n=1}^{\infty} (M_n)^{\frac{3}{2}} e^{-M_n|x-y|}$$

Glueball masses

- To find glueball states of given space-time quantum numbers, we compute equal-time correlators of invariant probe operators with appropriate J^{PC}
- For example, for 0⁺⁺ states we take $tr(B^2)$ as a probe operator and compute

$$\langle tr(B^2)_x tr(B^2)_y \rangle \sim K^{-2}(|x-y|)$$

• At large distance, we will find contributions of *single particle poles*

$$\langle tr(B^2)_x tr(B^2)_y \rangle \sim \frac{1}{|x-y|} \sum_{n,m=1}^{\infty} (M_n M_m)^{3/2} e^{-(M_n + M_m)|x-y|}$$

$M_{0^{++}}$	=	$M_1 + M_1 = 5.14m$
$M_{0^{++*}}$	=	$M_1 + M_2 = 6.78m$
$M_{0^{++**}}$	=	$M_1 + M_3 = 8.38m$
$M_{0^{++**}}$	=	$M_1 + M_4 = 9.97m$

0⁺⁺ Glueballs

- For 2+1 Yang-Mills, the "experimental data" consists of a number of lattice simulations, largely by M. Teper et al (hep-lat/9804008, hep-lat/0206027)
- The following table compares lattice results for 0⁺⁺ glueball states with analytic predictions. All masses are in units of the square root of string tension

State	Lattice, $N \to \infty$	Sugra	Our prediction	Diff, $\%$
0^{++}	4.065 ± 0.055	4.07(input)	4.098	0.8
0^{++*}	6.18 ± 0.13	7.02	5.407	12.5
0^{++**}	7.99 ± 0.22	9.92	6.716	16
0^{++***}	9.44 ± 0.38 5	12.80	7.994	15
0++***		15.67	9.214	

0⁺⁺ Glueballs (cont'd.)

- There are no adjustable parameters in the theory; the ratios of $M_{0^{++}}$ to $\sqrt{\sigma}$ are *pure numbers*
- We are able to predict masses of 0⁺⁺ resonances, as well as the mass of the lowest lying member
- Results for excited state masses differ at the 10-15% level from lattice simulations.
- The table below gives an updated comparison with relabeled lattice data

State	Lattice, $N \to \infty$	Our prediction	Diff, $\%$
0^{++}	4.065 ± 0.055	4.098	0.8
0^{++*}	6.18 ± 0.13	5.407	
0^{++**}	6.18 ± 0.13	6.716	
0^{++***}	7.99 ± 0.22	7.994	0.05
0^{++***}	9.44 ± 0.38	9.214	2.4

0⁻⁻ Glueballs

For 0⁻⁻ glueballs we compute

 $\left\langle \operatorname{Tr}\left(\bar{\partial}J\bar{\partial}J\bar{\partial}J\right)_{x}\operatorname{Tr}\left(\bar{\partial}J\bar{\partial}J\bar{\partial}J\right)_{y}\right\rangle \sim \frac{1}{64(2\pi|x-y|)^{\frac{3}{2}}}\sum_{n,m,\,k=1}^{\infty}(M_{n}M_{m}M_{k})^{3/2}e^{-(M_{n}+M_{m}+M_{k})|x-y|}$

- Masses of 0^{--} resonances are the sum of three constituents : $M_n + M_m + M_k$
- The following table compares analytic predictions with available lattice data. All masses are in units of the $\sqrt{\sigma}$

State	Lattice, $N \to \infty$	Sugra	Our prediction	Diff,%
0	5.91 ± 0.25	6.10	6.15	4
0^{*}	7.63 ± 0.37	9.34	7.46	2.3
0**	8.96 ± 0.65	12.37	8.73	2.5

Spin-2 States

- Similarly, analytic predictions for 2^{±+} states are compared with existing lattice data in the table above
- By parity doubling, masses of J⁺⁺ and J⁻⁺ resonances should be the same which is not the case with lattice values for 2^{++*} and 2^{-+*}. This indicates that apparent 7-14% discrepancy may be illusory.
- An updated comparison with relabeled lattice data is given in the table below

State	Lattice, $N \to \infty$	Our prediction	Difference, $\%$
2^{++}	6.88 ± 0.16	6.72	2.4
2^{-+}	6.89 ± 0.21	6.72	2.5
2^{++*}	8.62 ± 0.38	7.99	7.6
2^{-+*}	9.22 ± 0.32	7.99	14
2^{++**}	10.6 ± 0.7 6	9.26	13
2++***		10.52	

State	Lattice, $N \to \infty$	Our prediction	Difference, $\%$
2^{++}	6.88 ± 0.16	6.72	2.4
2^{++*}	8.62 ± 0.38	7.99	7.6
2^{++**}	9.22 ± 0.32	9.26	0.4
2++***	10.6 ± 0.7	10.52	0.8

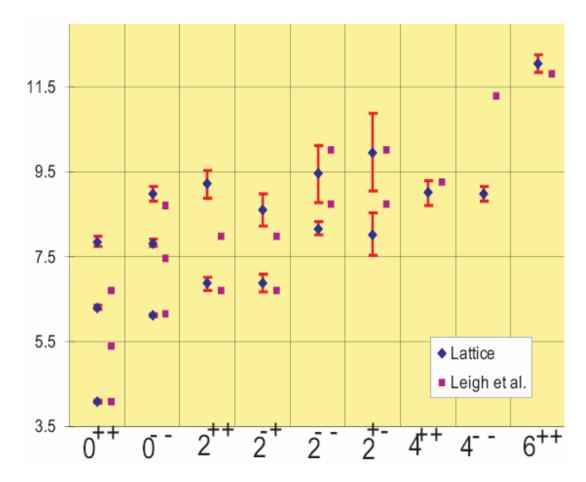
Spin-2 States (cont'd.)

 Finally, the table below summarizes available lattice data for 2^{±-} states and compares it to analytic predictions

State	Lattice, $N \to \infty$	Our prediction	Difference, $\%$
2^{+-}	8.04 ± 0.50	8.76	8.6
$2^{}$	7.89 ± 0.35	8.76	10.4
2^{+-*}	9.97 ± 0.91	10.04	0.7
2^{*}	9.46 ± 0.66	10.04	5.6

Summary of glueball mass spectrum

• All masses are in units of string tension (courtesy of Barak Bringoltz)



Higher Spin States and Regge Trajectories

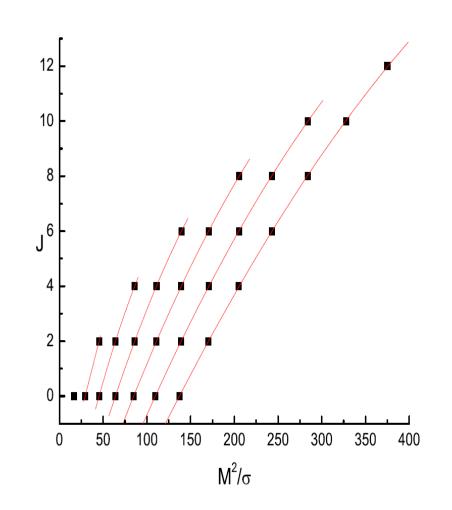
- It is possible to generalize our results for higher spin states
- For example, the masses of J⁺⁺ resonances with even J are

 $M_{J^{++*n}} = M_{J/2+1} + M_{J/2+1+n}$

 Similarly, the masses of J⁻⁻ resonances with even J are

$$M_{J^{--*n}} = M_1 + M_{J/2+1} + M_{J/2+1+n}$$

- It is possible to draw nearly linear Regge trajectories.
 - Graph on the right represents a Chew-Frautschi plot of large N glueball spectrum. Black boxes correspond to J⁺⁺ resonances with even spins up to J=12

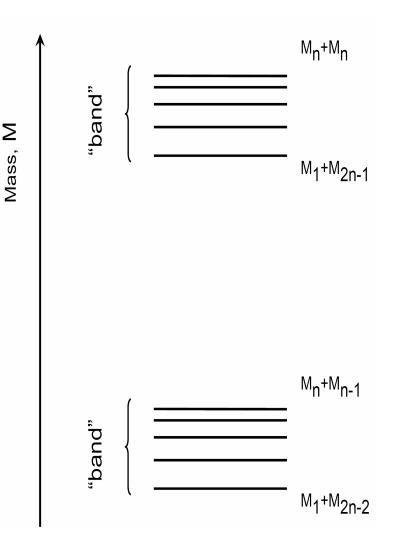


Approximate Degeneracy of Mass Spectrum

- The Bessel function is essentially sinusoidal and so its zeros are approximately evenly spaced (better for large n)
- Thus, the predicted spectrum has approximate degeneracies, e.g.

 $M_{0^{++**}} = M_1 + M_3 = 8.38m$ $M_{2^{++}} = M_2 + M_2 = 8.42m$

- The spectrum is organized into "bands" concentrated around a given level (which are well separated)
- At each level one finds more and more spin states
- We believe this is the basic manifestation of QCD string



Quarks

$$H = -\frac{g^2}{2} \int \frac{\delta^2}{\delta A_i^{a2}} + \frac{1}{2g^2} \int B^a B^a + \int \bar{\psi}(-i\gamma^i D_i + M)\psi \equiv H_g + H_f$$

Schrodinger representation for fermions (Floreanini and Jackiw, 88)

$$\psi(\vec{x}) = \frac{1}{\sqrt{2}} [\theta(\vec{x}) + \frac{\delta}{\delta\theta^{\dagger}(\vec{x})}] \qquad \qquad \psi^{\dagger}(\vec{x}) = \frac{1}{\sqrt{2}} [\theta^{\dagger}(\vec{x}) + \frac{\delta}{\delta\theta(\vec{x})}]$$

Vacuum ansatz

$$\Psi_{v} = \Psi_{g}\Psi_{f} = \Psi_{0} = \exp(-\frac{1}{2g^{2}m}\int Tr[B\left(K(L)\right)B)]\exp(\int_{x,y}\theta^{\dagger}(y)[K_{f}(D_{i})]_{y-x}\theta(x))$$

Quarks (cont'd)

Free fermions

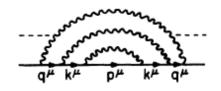
$$K(p) = -\frac{\gamma^0 M + \gamma^0 \gamma^i p_i}{\sqrt{p_i^2 + M^2}}$$

Physical interpretation

$$K(k) = v(-k)v^{\dagger}(-k) - u(k)u^{\dagger}(k)$$

$$\psi(x) = \int \frac{dp}{\sqrt{2\pi}} [b(p)u(p) + d^{\dagger}(-p)v(-p)]e^{ipx}$$

- QCD in (1+1)D ('t Hooft model, 74)
 - Rainbow diagrams
 - it is possible to reproduce
 Bars-Green equation (1977)



$$\left\{p\gamma_5 + m\gamma_0 + \frac{\gamma}{2} \int \frac{dk}{(p-k)^2} [u(k)u^{\dagger}(k) - v(-k)v^{\dagger}(-k)]\right\} u(p) = E(p)u(p)$$

Outlook

- Results are very encouraging but many open questions remain
- Extensions in (2+1)D:
 - Meson and baryon spectrum*
 - Finite temperature*
 - Scattering amplitudes
- Extension to (3+1)-dimensional YM*
 - It is possible to generalize KKN (I. Bars) formalism to 3+1 dimensions:
 L. Freidel, hep-th/0604185.