

The Search for $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ and $K_L \rightarrow \pi^0 \mu^+ \mu^-$

David G. Phillips II High Energy Physics Seminar May 2, 2007

Table of Contents

- 1) Introduction and Motivation for Studying $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ (note: $K_L \rightarrow \pi^0 \mu^+ \mu^-$ is being studied as a secondary analysis)
- 2) Previous KTeV Studies and Results
- 3) The **KTeV** Experiment
- 4) $K_{L} \rightarrow \pi^{0} \pi^{0} \mu^{+} \mu^{-}$ Event Reconstruction
- 5) Results from Crunch Procedure
- 6) Normalization Mode Studies
- 7) Conclusions

Introduction & Motivation

- a preliminary KTeV study on $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ was performed in late 2005.
- currently, there's no published calculation inside the Standard Model for $Br(K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-)$, although the decay is possible via γ^* .
- however, HyperCP reports a '*potential*' new neutral boson X^0 observed via $\Sigma^+ \rightarrow pX^0 \rightarrow p\mu^+\mu^-$. They determined the following branching ratios:

$$Br(\Sigma^{+} \to p\mu^{+}\mu^{-}) = (8.6^{+6.6}_{-5.4}(stat) \pm 5.5(syst)) x 10^{-8} ,$$

$$Br(\Sigma^{+} \to pX^{0} \to p\mu^{+}\mu^{-}) = (3.1^{+2.4}_{-1.9}(stat) \pm 1.5(syst)) x 10^{-8}$$

- Hyper CP gave the mass of the '*potential*' new boson X^0 as: $(214.3 \pm 0.5) MeV$
- two groups (Valencia *et al.* and Deshpande *et al.*) have recently computed $Br(\mathbf{K_L} \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-)$ in a phenomenological fashion.

Previous Studies

~Theorist Brainstorming~

- Valencia *et al.* and Deshpande *et al.* calculate $Br(K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-)$ following observations made by HyperCP; that is, they assume that the X^0 's have small widths, are short lived and do not interact strongly.
- Deshpande *et al.* estimates contraints on scalar and pseudoscalar X^{0} 's.
- finding that pseudoscalar couplings have the largest contribution, they evaluate the branching ratio as:

 $Br(\mathbf{K}_{\mathbf{L}} \to \pi^{0} \pi^{0} X^{0} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-}) = 8.02 \, x 10^{-9}$ (Deshpande et al., 2005)

- Valencia *et al.* take things a step further and consider scalar, pseudoscalar, vector and axial vector particle possibilities for the X^0 state.
- the decay $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ places serious constraints on scalar and vector particle possibilities. The branching ratio for $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ has been measured to be:

$$Br[\mathbf{K}^{+} \to \pi^{+} \mu^{+} \mu^{-}] = (8.1 \pm 1.4) x 10^{-8} \qquad (PDG, 2004)$$

- combining the upper result with constraints on scalar and vector couplings, *Valencia et al.* calculates theoretical upper limits on $Br(\Sigma^+ \rightarrow pX^0 \rightarrow p\mu^+\mu^-)$:

$$Br(\Sigma^+ \rightarrow pX^0_{\rm S} \rightarrow p\mu^+\mu^-) < 6 x 10^{-11}, \quad Br(\Sigma^+ \rightarrow pX^0_{\rm V} \rightarrow p\mu^+\mu^-) < 3 x 10^{-11}$$

- the above upper limits effectively eliminate both scalar and vector particles as explanations of the HyperCP result.

- they then use existing constraints on pseudoscalar or axial vector X^0 's to predict the pseudoscalar and axial vector X^0 contributions to the $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ decay mode:

$$Br(\mathbf{K}_{\mathbf{L}} \to \pi^{0} \pi^{0} X^{0}_{p} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-}) = (8.3^{+7.5}_{-6.6}) x 10^{-9}$$

$$(Valencia \ et \ al., \ 2005)$$

$$Br(\mathbf{K}_{\mathbf{L}} \to \pi^{0} \pi^{0} X^{0}_{A} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-}) = (1.0^{+0.9}_{-0.8}) x 10^{-10}$$

- there is *no current experimental upper limit* on $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ or $K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$.

The Possibility of $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ Within The Standard Model

- the decay $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ is feasable within the Standard Model although its' phase space is limited to a paltry 16.35 MeV.
- although there is no current published Standard Model theory for $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$, Heiliger and Sehgal have paper out there on $K_L \rightarrow \pi^0 \pi^0 e^+ e^-$.
- the amplitude of $K_L \rightarrow \pi^0 \pi^0 e^+ e^-$ is encompassed in a two piece set, with one piece coming from conversion of a virtual photon in the process $K_L \rightarrow \pi^0 \pi^0 \gamma^*$ and another with a real photon amplitude $K_L \rightarrow \pi^0 \pi^0 \gamma$.
- even in the narrow phase space of $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$, the direct γ^* production will only yield a background in the $\mu^+ \mu^-$ mass band around 214 MeV.

Previous KTeV Studies $(K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-)$

- the data used in the previous KTeV study was from the 1997 E799 run.

- results from that analysis include:

~acceptance of 2.73% \rightarrow single event sensitivity of 1.4 $x10^{-10}$

~signal of less than 2.3 events

~partial width for 'new physics' estimated to be $< 4.0 x 10^{-24} MeV$

- the aforementioned analysis does however have some potential shortcomings that need to be addressed, such as the following:

~identification and estimation of background.

~selection and completion of a normalization analysis.

~systematics in the sensitivity!

~usage of a constant matrix element in the $K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ MC generation.

Previous KTeV Studies ($K_L \rightarrow \pi^0 \mu^+ \mu^-$)

- KTeV thesis on $K_L \rightarrow \pi^0 \mu^+ \mu^-$ was completed in early 1999.
- this decay is particularly interesting since it contains a direct CP violating contribution within the Standard Model.
- two events were observed with an expected background of events from MC simulation. The upper limit was set at: 0.87 ± 0.15 $Br(K_L \rightarrow \pi^0 \mu^+ \mu^-) < 3.8 \times 10^{-10}$ (*PRL*, June 2000)
- the above analysis was performed on the KTeV E799 1997 data set only. <u>An analysis on the 1999 data set has yet to be performed.</u>

What Is The KTeV Experiment???

- KTeV stands for "Kaons at the TeVatron" and consists of two fixed target experiments (E799 and E832) located at Fermilab.

- Data was collected in 1996-1997 and 1999-2000; these two runs are referred to as the '97 and '99 runs respectively. (Note: the detector and the Tevatron were updated in the intermediary period.)

- the goal of E799 is to detect and measure rare K_L decays, especially CP-violating processes.

- the main purpose of E832 is to measure the *direct CP violation* parameter $Re(\epsilon'/\epsilon)$ at the 10⁻⁴ level.

Creation of the Neutral Kaon Beam

- neutral kaons are created by a proton beam hitting a fixed BeO target with transverse dimensions of 3x3 mm and a length of 30 cm (~1.1 interaction lengths).
- the TeVatron provided 2.5 to 5 trillion 800 GeV/c protons in a 20 s 'spill' once per minute.
- the proton beam has a 53 MHz nanostructure such that the protons arrive in ~1 ns 'buckets' once every 19 ns.
- the center of the BeO target defined the origin of the KTeV right-handed co-ordinate system, where the +z-axis is defined from the target to the center of the detector.
- the incident proton beam was directed at an angle of 4.8 mrad with respect to the +z-axis in order to maximize the kaon flux and optimize the K-n ratio.

- the beam exiting the BeO target contained very few kaons compared to the number of hadrons and photons produced.
- a series of collimators and sweeping magnets were designed to create two side-by-side beams of neutral particles and rid them of any hadrons and photons.

at z = 90 m, the two beams enter the KTeV decay region, which is an evacuated volume held at ~1 µTorr and is 69 meters in length.

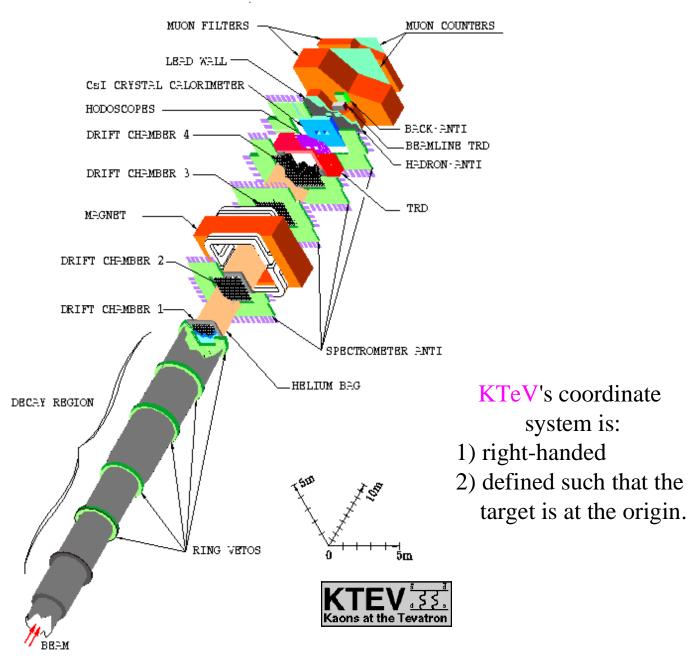
- at the end of the decay region was a *Mylar laminated* Kevlar vacuum window. The window was made extremely thin (0.0015 radiation lengths) in order to minimize photon conversion and bremsstrahlung.

The KTeV 'Double Beam' Technique

- KTeV uses two parallel neutral kaon beams to produce K_L and K_s decays.

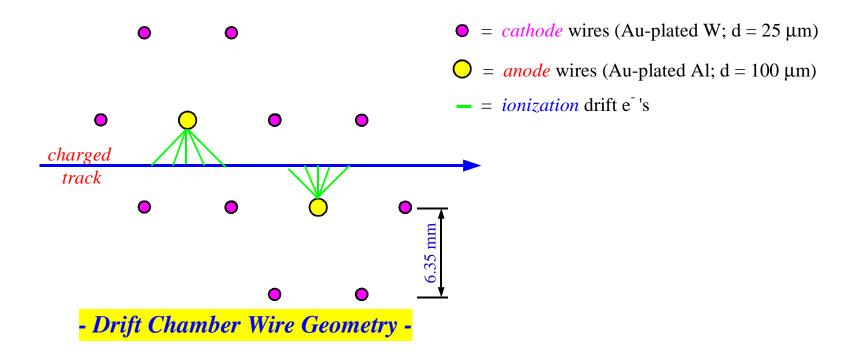
~ E799 uses two identical K_L beams.

(Note: nearly all of the K_s 's and hyperons produced at the target decay before they reach the decay region, which is ~90 m from the target.)


~ E832 also has two K_L beams, but one of them passes through a plastic regenerator to produce K_s 's.

- This novel technique is beneficial, because it enables us to collect K_L and K_s decays at the same time and under the same conditions.

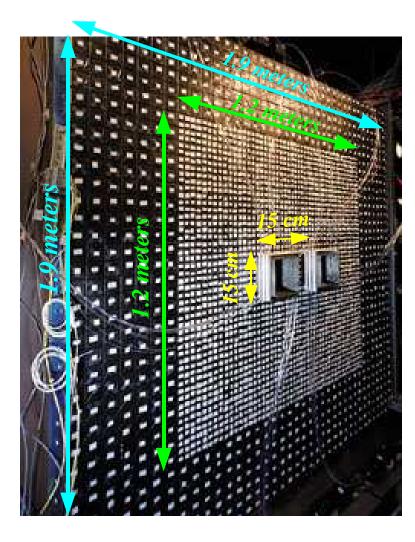
- This reduces biases due to temporal fluctuations during data taking, such as changes in beam intensity and variations in detector response.


- Biases due to different levels of activity in the kaon beams from neutral hadrons are also suppressed.

The **KTeV** Detector

The **KTeV** Spectrometer

- the KTeV Spectrometer uses an analysis magnet sandwiched between four drift chambers to measure charged track momenta and trajectories.



each drift chamber has a pair of *Y-view* anode wire planes followed by a pair of *X-view* anode wire planes; there are a total of *1972* anode wires in the four drift chambers.

- each drift chamber was filled with a 50/50 mix of *argon/ethane* along with a bit (~1%) of *isopropyl alcohol*; the alcohol slowed chamber aging by absorbing harmful ultraviolet light.
- helium bags were placed before, behind and between each drift chamber to reduce photon conversions, multiple scattering and beam interactions.
- the magnet has a strength of ~0.5 T, produces a field that's uniform to better than 1% and imparts a 0.41 GeV/c kick in the horizontal plane.
- the *momentum resolution* of the spectrometer is:

 $\sigma_P / P = (0.038 \oplus 0.016 P)\%$, where P is in GeV/c.

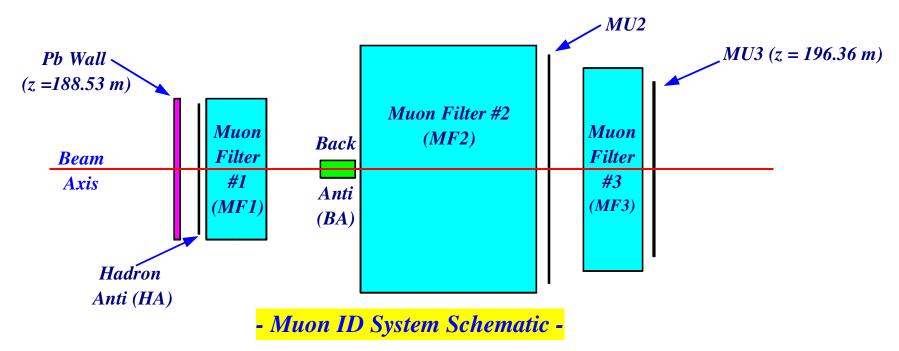
The **KTeV** Electromagnetic Calorimeter

- the KTeV ECAL is composed of 3100 pure CsI crystals.
- the 868 larger outer crystals have a 5 x 5 cm² cross-section, while the inner crystals have an area of 2.5 x 2.5 cm².
- all crystals are 50 cm long (27 radiation lengths, 1.4 interaction lengths)
- the energy resolution for photons was:

 $\sigma_E/E = (0.4 \oplus 2/\sqrt{E})$ %, where E is in GeV.

- the position resolution was ~1 mm.
- the π^{0} mass resolution (for $K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}$) was ~1.3 MeV/c².

KTeV CsI Crystals & PMTs



- the CsI crystals all have a unique outer wrapping designed to produce a uniform scintillation response along the length of the crystals.
- in order to maximize the uniformity, the crystals were wrapped in 13 μ m thick black and/or reflective mylar coverings; the ratio of black and reflective wrappings as well as the boundary between the two is different for every crystal.

 affixed to each crystal was a photomultiplier (PMT) with a DPMT (digital PMT) board. The DPMT board was created to digitize and buffer the anode signal from the PMT's.

The **KTeV** Muon ID System

- the *Muon ID System* is a series of particle filters and scintillator planes that are designed to identify muons by filtering out other charged particles.

<u>**Pb Wall**</u> – the purpose of the <u>10 cm thick</u> lead wall was twofold:

1) absorption of EM showers that leaked out of the CsI ECAL.

2) induction of hadronic showers for the hadrons that didn't shower in the CsI ECAL.

<u>*HA*</u> a plane of 28 non-overlapping scintillator paddles used to veto events with hadronic activity.

- <u>*MF1*</u> a 1 meter thick steel barrier, which provided protected for the HA against backsplash off the neutral beamdump, *MF2* (*Pb Wall*, *HA* and *MF1* all had holes in the center to allow for passage of the neutral beams).
- <u>MF2 & MU2 –</u> at 3 meters thick and composed of 44 m² of battleship steel, MF2 stopped a large majority of hadronic activity. MU2 is a plane of 56 150cmx15cmx1.5cm scintillator counters that was user as an acceptance detector for muon calibration triggers.
- <u>MF3</u> an additional 1 meter steel barrier located behind <u>MU2</u>. A muon would need a min. momentum of 7 GeV/c to pass through the Pb wall and the 3 muon filters. All in all, the Pb wall and muon filters add up to a total of 31 nuclear interaction lengths.
- <u>MU3</u> two planes of 40 non-overlapping scintillator counters each. <u>MU3</u> is used to trigger on rare decays with muons in the final state. The hit resolution in X & Y is 15 cm.

$K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ Analysis Strategy

-Data Selection-

- the data to be used in this study will be from the dimuon trigger of the 1997 (1999 later on) KTeV E799 run

- a 'crunch' has been performed on 130 data storage tapes...these tapes contained approximately *1.73 TeraBytes* of data.

- some other decays available from the dimuon trigger are: $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$, $K_L \rightarrow \pi^0 \mu^+ \mu^- \gamma \gamma$ and $K_L \rightarrow \mu^+ \mu^- \gamma$.

- two potential candidates for the *normalization* mode are $K_L \rightarrow \mu^+ \mu^- \gamma$ and $K_L \rightarrow \mu^+ \mu^- \gamma \gamma$.

TRIG5[2MU-LD] = GATE*2V*DC12*2MU3*PHVBAR1*2HCY_LOOSE*HCC_GE1

2V = 2 hits in V view and 1 hit in V' view *OR* 2 hits in V' and 1 hit in V.

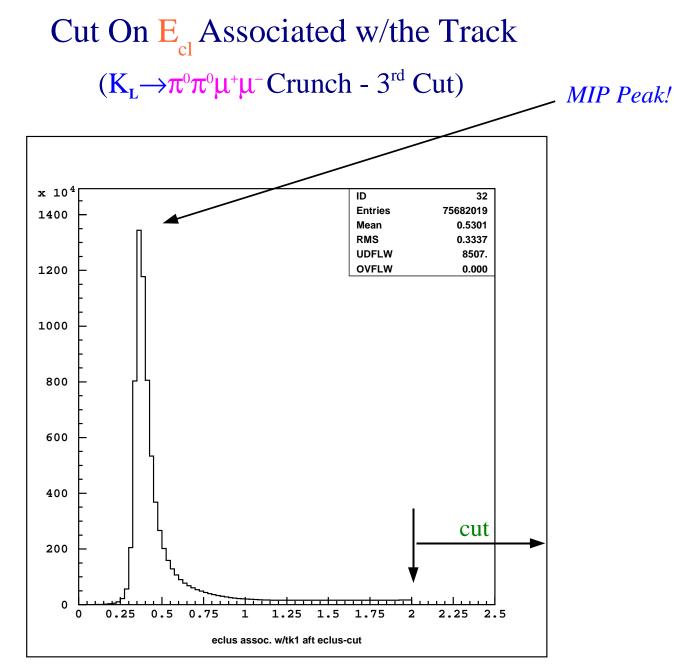
∠-'97 def'n

DC12 = at least 1 DCOR hit in each view of DC1 and DC2.

2MU3 = 2 or more hits in the X and Y views of MU3.

<u>*PHVBAR1*</u>: this is a veto on all RC's (except RC8), all SA's and the CIA. Specifically, this rejects events that deposit ≥ 500 MeVin the RC's and ≥ 400 MeV in the SA's and the CIA.

<u>2HCY_LOOSE</u>: 2+ hits in every y view of the drift chambers (by the hit counting module); however, a missing hit is allowed in the y view of chamber 1 *OR* chamber 2.

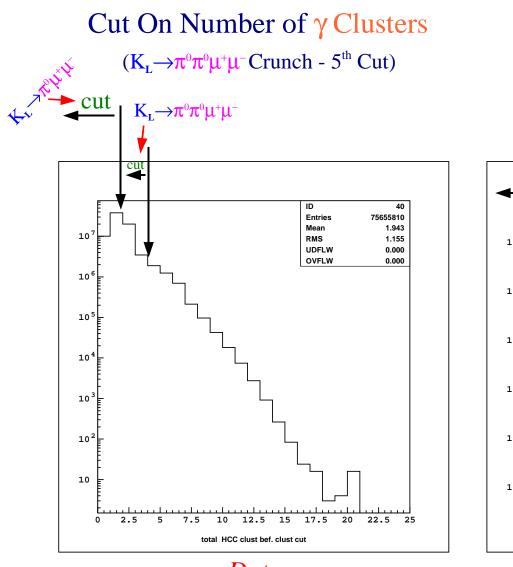

HCC_GE1: \geq 1 hardware cluster.

(logic symbols: & or * = AND, | or + = OR, ! = NOT)

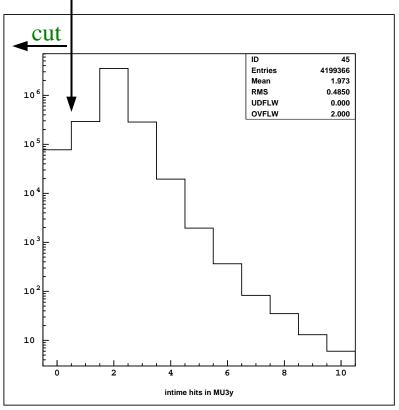
$K_{L} \rightarrow \pi^{0} \pi^{0} \mu^{+} \mu^{-}$ Event Reconstruction


-Crunch Cuts-

$\begin{array}{c} K_{L} \rightarrow \pi^{0} \pi^{0} \mu^{+} \mu^{-} \\ Crunch Cut^{*} \end{array}$	Data [♪]	MC [♪]	Data [⊅]	MC ⁵	$K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}$ Crunch Cut [*]		
Require 2 tracks	0.700	0.992	0.700	0.996	Require 2 tracks		
$C_{track1} = -C_{track2}$	0.999	1.000	0.999	1.000	$C_{track1} = -C_{track2}$		
$E_{cl}(track) \le 2.0 \text{ GeV}$	0.391	0.942	0.391	0.982	$E_{cl}(track) \le 2.0 \text{ GeV}$		
$E_{cl}(track) / p_{track} \le 0.9$	0.999	1.000	0.999	1.000	$E_{cl}(track) / p_{track} \le 0.9$		
# γ clusters ≥ 4	0.056	0.629	0.366	0.720	# γ clusters ≥ 2		
# hits in μ planes ≥ 1	0.980	1.000	0.982	1.000	# hits in μ planes ≥ 1		
$ \mathbf{M}_{\mathrm{rec},\mathrm{pi0}} - \mathbf{M}_{\mathrm{pi0}} \le 15 \mathrm{MeV}$	0.196	0.983	0.480	0.985	$ \mathbf{M}_{\text{rec.pi0}} - \mathbf{M}_{\text{pi0}} \le 15 \text{ MeV}$		
$90.0 \text{ m} \le \text{Z}_{_{\text{VTX}}} \le 160.0 \text{ m}$	0.265	0.985	0.987	0.999	$90.0 \text{ m} \le \text{Z}_{_{\text{VTX}}} \le 160.0 \text{ m}$		
			0.887	0.997	$400 \text{ MeV} \le \text{K}_{\gamma\gamma\mu\mu} \le 600 \text{ MeV}$		
$p_{\rm T}^2 \le 0.06 \; {\rm GeV}^2/{\rm c}^2$	0.569	0.999	0.678	0.993	$p_T^2 \le 0.0025 \text{ GeV}^2/c^2$		
Total Acceptance	0.00044	0.569	0.028	0.687	Total Acceptance		
* = cuts listed in chronological order, \mathbf{J} = initial # events was ~20K, \mathbf{J} = initial # events was ~277 M							


Data

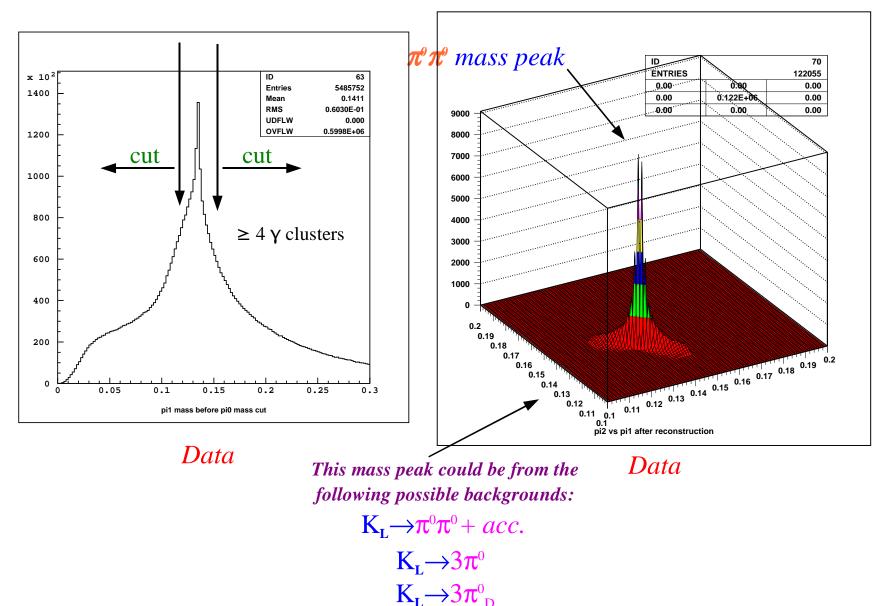
Cut On $E_{cl}(track)/p_{track}$


Data

Data

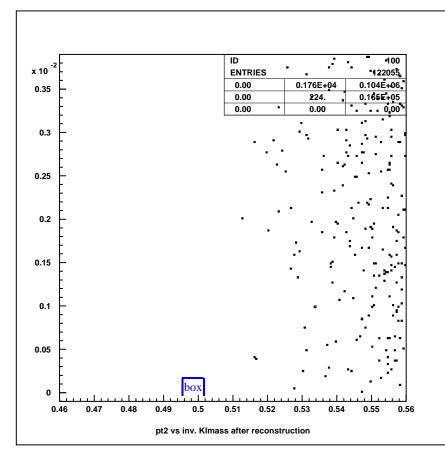
Cut On Number of Hits in µ Counting Planes

 $(K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^- Crunch - 6^{th} Cut)$

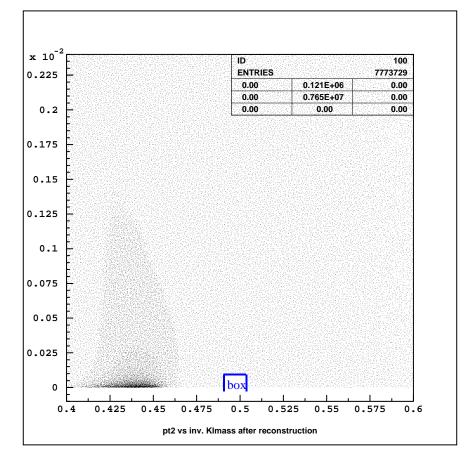


Data

Data


Cut On Reconstructed π Mass

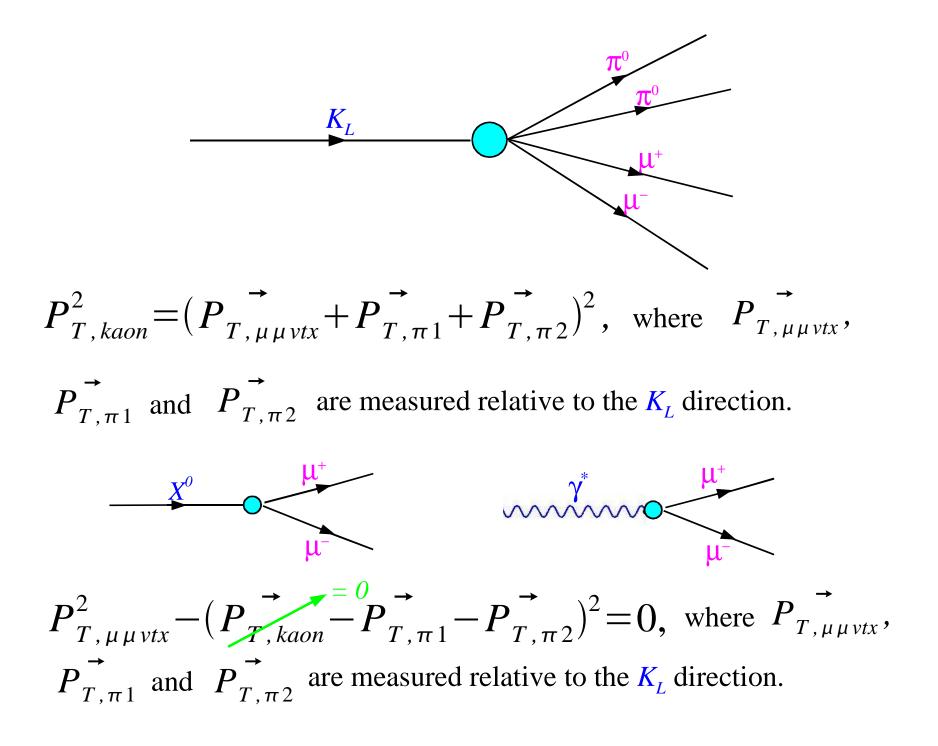
 $(K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^- Crunch - 7^{th} Cut)$



Results From Crunch of All Tapes

$(P_T^2 vs. Inv. K_L Mass)$

 $K_{L} \rightarrow \pi^{0} \pi^{0} \mu^{+} \mu^{-} Data$ $\sim Box Dimensions \sim$ $495 \text{ MeV} \leq M_{\gamma\gamma\gamma\gamma\mu\mu} \leq 501 \text{ MeV}$ $p_{T}^{2} \leq 130 \text{ MeV}^{2}$


 $K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-} Data$ $\sim Box Dimensions \sim$ $491 \text{ MeV} \leq M_{\gamma\gamma\mu\mu} \leq 505 \text{ MeV}$ $p_{T}^{2} \leq 100 \text{ MeV}^{2}$

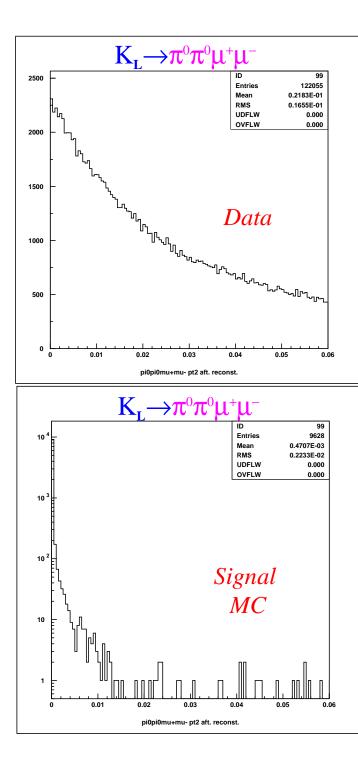
What Is A 'Blind Analysis'?

- a '*blind analysis*' is a technique of hiding some part of the data to prevent experimenter's bias, or that bias which stems from someone "unconsciously working toward a certain value."
- in this analysis, we could be setting ourselves up for a truly dangerous bias scenario, since we're looking for a signal that's at the edge of phase space.
- *Why*? 1) One could choose cuts to *remove* individual events, thereby possibly yielding a better upper limit than is deserved.
 - 2) Or one could choose cuts to *retain* individual events, which could potentially produce a signal where none is warranted.

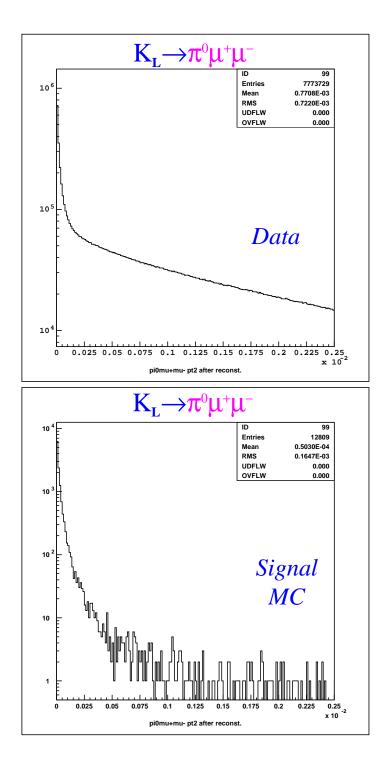
Why Do We Need A 'Box'??

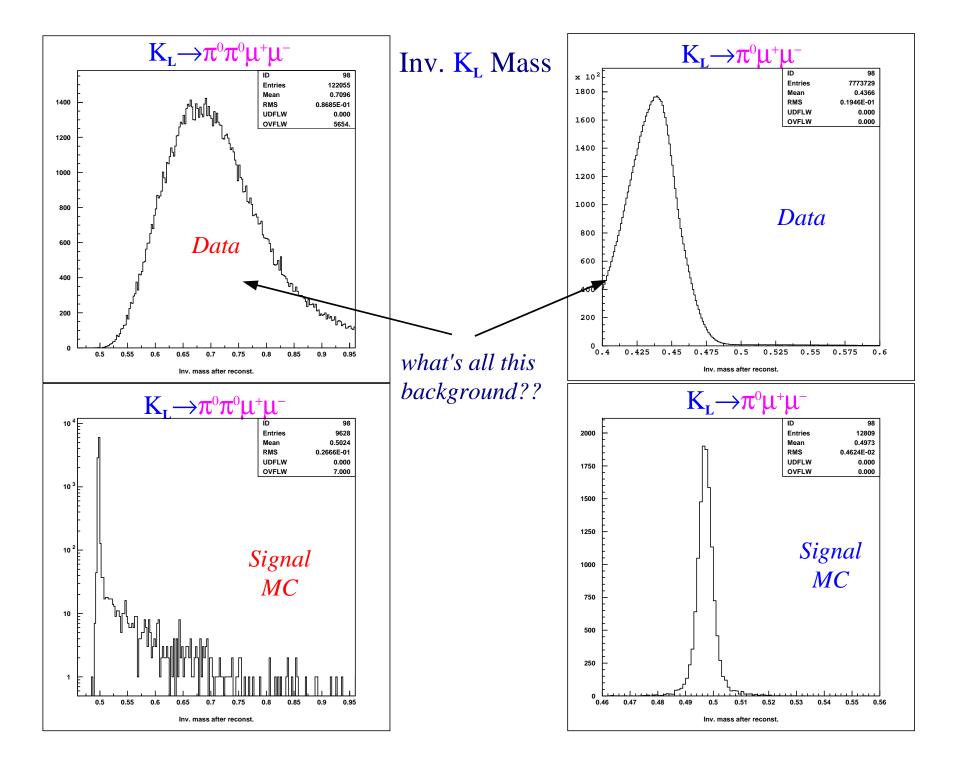
- we need to define our signal region in terms of two experimental parameters that will separate *signal* from *backgrounds*.
- since we can simulate the signal, determine its' efficiency and estimate the size of the background in the signal region using the *invariant* K_L mass and P_T^{2} , then a 2D signal box using these variables does the job well.

x 10 ⁻² 녝 93 0.16 ENTRIES 122055 0.00 0.198E+05 0.868E+05 0.203E+04 0.135E+05 0.00 0.14 0.00 0.00 0.00 0.12 0.1 ____ 0.08 X^0 0.06 0.04 0.02 0 0.212 0.2125 0.213 0.2135 0.214 0.2145 0.215 0.2155 0.216 0.2165 0.217

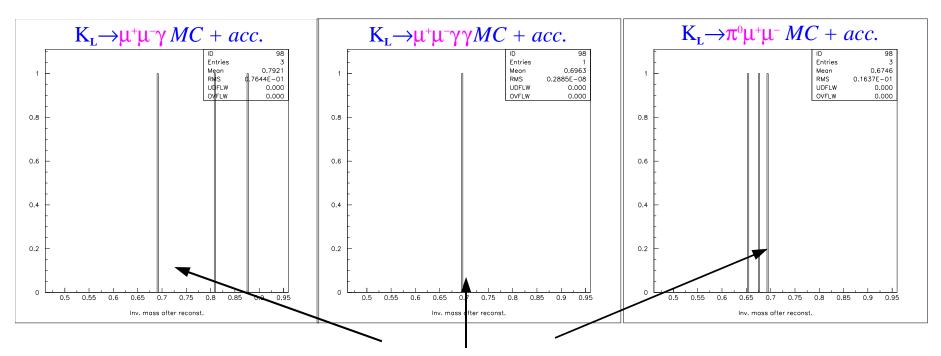

$([P_{T,\mu+\mu-vtx}^{2}-P_{T,\pi0\pi0}^{2}]$ vs. Inv. $\mu^{+}\mu^{-}$ Mass)

pt2 vs inv. mumumass after reconstruction


$\mathbf{K}_{\mathbf{L}} \rightarrow \pi^{0} \pi^{0} \mu^{+} \mu^{-} Data$


~ Box Dimensions ~

213.8 MeV $\leq M_{\mu\mu} \leq 214.8$ MeV $p_T^2 \leq 700$ MeV²



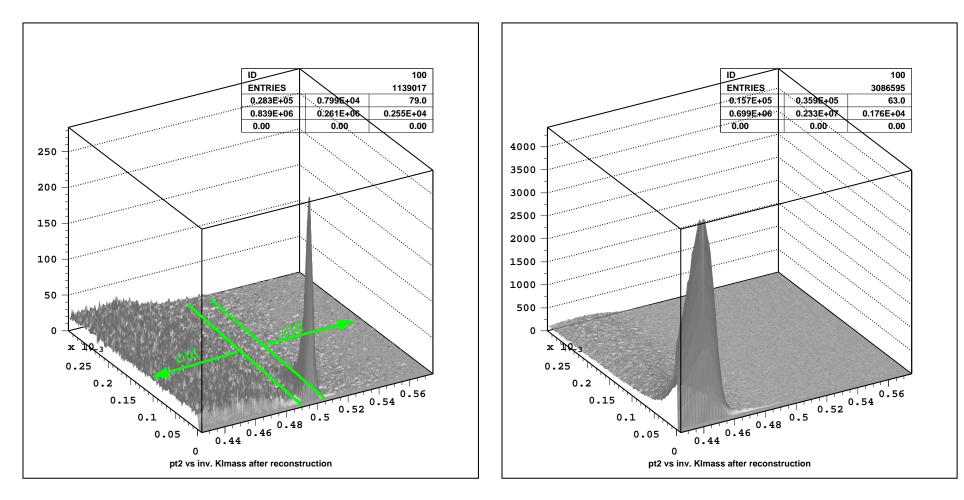
 $P_{T}^{\ 2}$

MC Studies on High Mass Signal Mode Background

After feeding the above MC Samples (~20 K events) into the $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ Crunch Code, this is what we were left over with after all cuts.

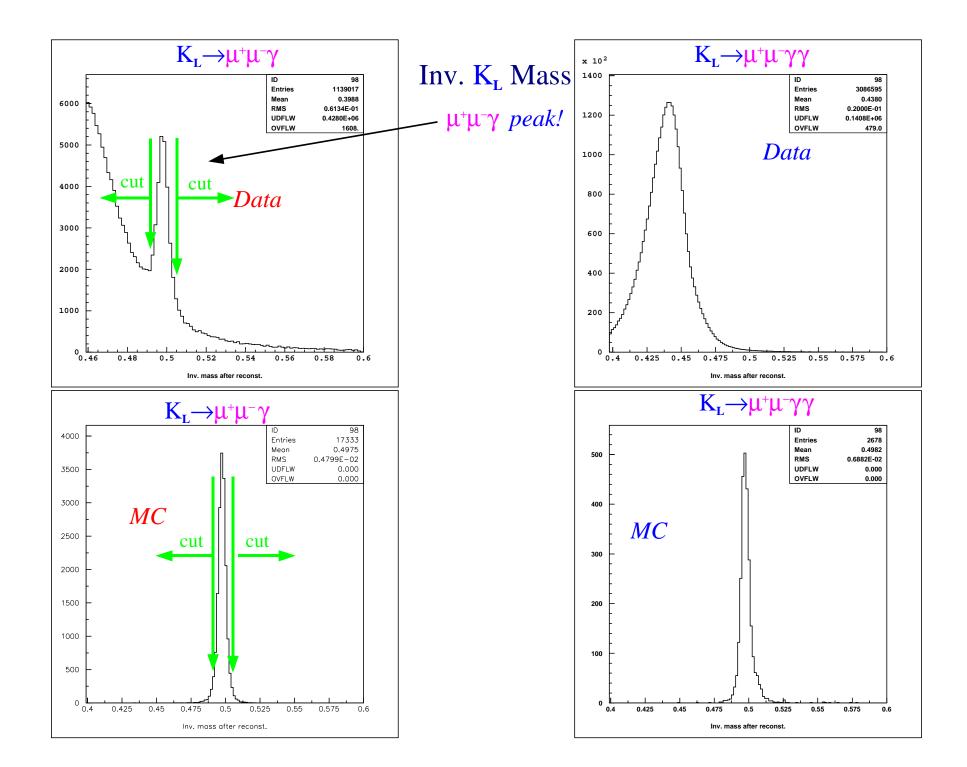
- We can relate the above plots to the High Mass Background Spectrum in the Inv. K_L Mass Plot for $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ by extrapolation:

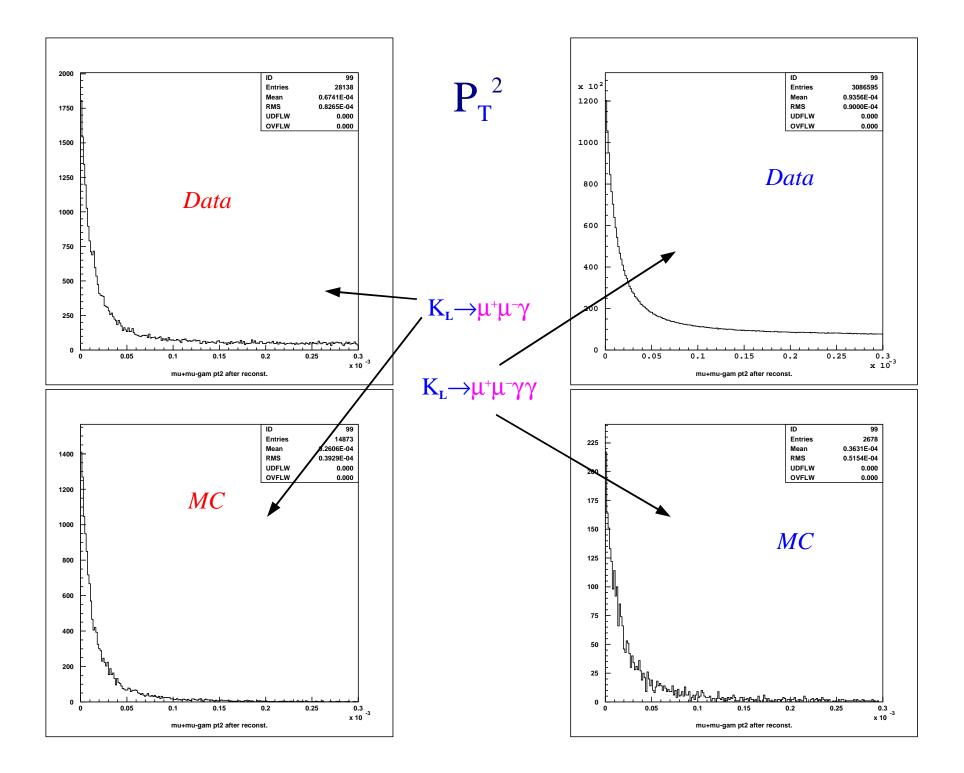
7 events /(20 K *MC events*) \simeq x /(277 M *Data events*) \longrightarrow x \simeq 96800 background events


- So, our *MC Estimate* says that ~ 96800 events in the high mass signal mode background are due to the above three decays. This accounts for ~ 80 % of the background.
- Another potential background to be studied is $K_{\mu3}\gamma$ + acc.

Normalization Mode Studies**

-Crunch Cuts-


$K_L → μ^+ μ^- γγ$ Crunch Cut [*]	Data [♪]	MC [♪]	Data [⊅]	MC [♪]	$\begin{array}{c} K_{L} \rightarrow \mu^{+} \mu^{-} \gamma \\ Crunch Cut^{*} \end{array}$
Require 2 tracks	0.700	0.998	0.700	0.998	Require 2 tracks
$C_{track1} = -C_{track2}$	0.999	1.000	0.999	1.000	$C_{track1} = -C_{track2}$
$E_{cl}(track) \le 2.0 \text{ GeV}$	0.391	0.980	0.391	0.990	$E_{cl}(track) \le 2.0 \text{ GeV}$
$E_{cl}(track) / p_{track} \le 0.9$	0.999	1.000	0.999	1.000	$E_{cl}(track) / p_{track} \le 0.9$
# γ clusters = 2	0.265	0.158	0.501	0.937	# γ clusters = 1
# hits in μ planes ≥ 1	0.983	1.000	0.988	1.000	# hits in μ planes ≥ 1
$90.0 \text{ m} \le \text{Z}_{_{\text{VTX}}} \le 160.0 \text{ m}$	0.973	1.000	0.977	0.999	$90.0 \text{ m} \le \text{Z}_{_{\text{VTX}}} \le 160.0 \text{ m}$
$p_T^2 \le 0.0003 \text{ GeV}^2/c^2$	0.161	0.947	0.031	0.949	$p_{\rm T}^2 \le 0.0003 \; {\rm GeV}^2/{\rm c}^2$
			0.025	0.917	492 MeV $\leq K_{\mu\mu\gamma} \leq 504$ MeV
Total Acceptance	0.011	0.147	0.0001	0.806	Total Acceptance


Normalization Modes: P_T^2 vs. Inv. K_L Mass

 $K_{L} \rightarrow \mu^{+}\mu^{-}\gamma Data$

K_L→μ⁺μ⁻γγ *Data*

Future Plans

- HyperCP uses a uniform matrix element for $\Sigma^+ \to pX^0 \to p\mu^+\mu^-$. This would not be advisable for $K_L \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^-$ since the K_L decay is momentum dependent.

 \rightarrow must ensure that we use the correct matrix element in the MC generation!!!

- luckily, *Deshpande et al.* gives the matrix element for $K_L \rightarrow \pi^+ \pi^- X^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ (albeit for a pseudoscalar X^0)
- meanwhile, *Valencia et al.* provides the matrix element for the decay $K^0 bar \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ (for both pseudoscalar and axial vector X^0 's)
- with the tools listed above, we should be able to construct a suitable matrix element for $K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ and improve MC generation!

- in short, this analysis has been started from scratch and I will be analyzing the data *with the box closed* and with my own cuts.
- still need to decide on my *backgrounds*, which would reside at the edge of phase space.